损坏的缘由是多方面的。有构造规划和选材不当引起的,有加工制造和安装、调试质量欠佳引起的,也有操作操作不当和维护维护不良导致的。任何损坏都可以先从较大概的损坏因由查起,这样可以避免对柴油发电机不必要的拆卸,节约了时间和柴油发电机修理成本。因此,康明斯公司在本文中具体对操作、保养保养及加工制造等方面造成故障的原由予以简易引荐,同时对多见损坏现状、处置步骤及避免方法做了进一步阐明和说明,
柴油发电机组两大详细组件分别是发电机和发电机,成套整机外观结构如图1所示。其中,发电机是柴油发电机组较重要的部分。它是驱动发电机(交流发电机)发电的动力。所配套的交流发电机是康明斯发电机组的第二个详细部分,现在大多数交流发电机都是带有旋转励磁装置的无刷类别。若是提到故障问题,通常通常发生在发电机上,发电机只要不是非法使用或恶劣环境下作业,几乎不会产生故障问题。当柴油发电机出现故障时,会出现故障图标示警,提醒用户及时清除,损坏警告标志如图2所示。以下为发电机多发的频发故障现象:
柴油发电机排烟的颜色与正常状况下相比存在差异柴油发电机在运转步骤中发生损坏时会产生冒黑烟、 蓝烟、白烟等现状。而在正常运作情形下,柴油发电机排放的烟应为无色或淡灰色。当柴油发电机产生黑烟时, 意味着柴油发电机负载超重,或者供油不及时,发生过晚等状况。当柴油发电机在运转过程中产生冒蓝烟现象时, 则意味着柴油发电机使用时间相对较长,继而开始燃烧机油。因而,当出现这种情况时,要对柴油发电机进行及时修理。当柴油发电机在运行过程中出现白烟时,则意味着在燃烧的油料中含有水分,亦或喷油泵偶件发生严重磨损、供油提前角过量等状况。因而,要用肉眼对柴油发电机尾气排放的颜色进行辨析,并查询到柴油发电机出现故障的因由。
柴油发电机组在运行过程中会出现一些损坏,其中包括柴油发电机启动故障。柴油发电机柴油启动损坏是指柴油发电机在启动时,倘若曲轴产生转不动或者转动速度很慢时,则意味着康明斯发电机组在启动时,转速相对较低。柴油发电机组在起动时,也会出现起动速度虽然正常,但是柴油发电机很难着火,亦或康明斯发电机组在起动时,柴油发电机虽然产生了着火,但是柴油发电机却没有正常运行,运转速度不稳定,甚至发生熄火等现状。
柴油发电机组在运行程序中,也会发生机油压力过低等现象。柴油发电机出现机油压力偏低等情形时,将会危害机油泵正常运行。当然,也会使油路出现大量漏油等情况。柴油发电机出现机油压力太低,也会引起柴油发电机组发生吸油困难,甚至吸不上油等。柴油发电机产生机油压力偏低对集滤器也有一定的影响,会导致集滤器堵塞,从而使康明斯发电机组吸不上油。
由于违章操作造成的柴油发电机损坏,在柴油发电机故障中占有很大比例。这其中有思想上的疏忽,技术上的不通晓,也有错误的习惯作法。易损的违章使用有以下几个方面:
起动后未立即释放按钮、关闭开关。采用电起动系统时,柴油发电机一次持续运行不得超过10s,时间过长将因偏热而烧坏起动机。有时还会产生柴油发电机倒拖发电机现状,导致发电机飞车运行而损坏。
此时由于油温低、粘度高,只是摩擦面润滑不良,从而致使柴油发电机异样损伤、拉伤等损坏。
新的或大修后的柴油发电机,特别是现场维修的柴油发电机,更替缸套、活塞或者活塞环等零件后,未经充分磨合,直接带高负载运转。这样往往造成柴油发电机零件异样磨耗,甚至出现拉缸、活塞卡滞等故障。
油量不足,造成摩擦副表面供油不足,导致柴油发电机异常磨损或烧伤。
水量不足,冷却系统易发生气阻,柴油发电机得不到充分冷却,会因柴油发电机机件太热发生拉缸等事故。
超负荷状态下柴油发电机的功率往往低于标定功率,柴油发电机各部位承受超过正常工作或布置时所允许的热力载荷。柴油发电机长久超负荷作业十分不利,具体因为超负荷作业时,柴油发电机工作粗暴,排烟管冒黑烟,产生大量积炭。同时,柴油发电机温度升高,润滑条件变差,加剧机油老化和零件损伤。
运转中水温过低、过高或油温太低、偏高,都会造成柴油发电机零件损伤加剧。
未按照规定进行维护维保也容易造成故障。多见的损坏起因有以下几个方面:
这样容易造成及油量不足或机油过脏、恶化变质,使润滑变差,造成柴油发电机异常磨耗、烧瓦等故障。
这样容易造成机油过滤器阻力过度,甚至阻塞,机油从旁通阀通过,使未经滤清的脏污机油流入润滑部位,导致柴油发电机不正常磨耗或损伤。如图3所示。
这样容易造成柴油滤芯阻力过度,供油不足,导致柴油发电机功率不足,频率时快时慢等损坏。
这样容易造成空气滤清器阻力过大、空气量不足,引起柴油发电机功率不足、排黑烟或排气温度太高等损坏。
这样容易造成气门间隙过量或过小,引起柴油发电机功率低效、油耗升高、排烟温度偏高和气门磨耗加快等故障。
拆装错误也是引起柴油发电机故障的重要起因之一。其中有以下几个方面:
活塞环开口位置未错开,扭曲环上下面倒装等,将致使柴油发电机窜机油状况和窜气情形。活塞环安装位置示意图如图4所示。
喷油嘴中喷油泵伸出气缸盖底平面高度有严格的尺寸要求,若因垫片漏装或多装而使该尺寸过量或过小,将致使柴油发电机燃烧恶化、积炭严重、功率不足、冒黑烟、或因漏装垫片造成从喷油器处漏气、烧坏气缸盖等状况。
气缸垫购买错误或者漏装,将造成柴油发电机气缸压力下降、漏气和活塞碰气缸盖等损坏。
齿轮啮合记号装错,将引起气门碰活塞,供油提前角太大或太小,致使柴油发电机燃烧恶化、排黑烟、排气温度升高或者活塞烧损等损坏。
紧固连杆螺母、气缸盖螺母时(安装位置示意图如图5所示),力矩不准或紧固顺序不对,将造成柴油发电机气缸盖密封不严,甚至螺栓断裂等故障。
当气门杆和导管之间配合间隙(检验方法如图6所示)、活塞和缸套配合间隙、轴和轴承间隙、齿轮啮合间隙等不符合要求时,将造成柴油发电机异常磨损、拉缸、烧瓦和齿轮损坏等故障。
这方面的起因大部分是材料用错、材料存在内在品质问题和机加工中某些部位不过关造成,加工制造方面的短处在装配中很难发现,使用一段时间后才暴露出来,从而造成零件故障。主要表现在以下几个方面:
表现为有的铸件如缸盖、缸体等存在着松缩、砂眼和细小裂纹等短处,从而使柴油发电机作业一段时间后因这些缺陷出现漏水、漏气、渗油;或表现为铸造精度不高,如水道狭窄,造成柴油发电机工作中水流不畅、热量不易外传,引起气门损伤加剧或气缸盖裂纹。
柴油发电机有些具体零件因为制造步骤中材料用错,操作中因强度不足致使零件故障。
有些柴油发电机零件热排除程序中未按工艺规程操作,是解决后的零件力学性能不符合要求,发生过硬、过软、强度不足、脆性高等问题。在使用程序中致使;零件变形、裂痕、磨损过量等损坏。
有些柴油发电机零件的关键部位,因为加工者未能认识其必要性,是这些部位不符合要求,结果造成使用中的损坏。如活塞销座和活塞销孔的圆角、曲轴的内圆角、活塞环的尖棱等,加工不符合要求往往致使活塞销座裂痕、主轴裂痕、活塞环刮油效果差等,再如主轴的主要曲轴颈同轴度、机体主轴承孔的同轴度加工误差,引起主轴的偏磨,甚至烧瓦。
有些柴油发电机零件因排查应力不够,造成使用中变形,丧失原来的加工精度,破坏了正常的配合关系,使柴油发电机产生漏气、漏油、渗水情形。
和柴油机的单缸断油手段相似、即在柴油发电机怠速运行的情况下,逐一将其高压油管接头螺母松开(使该缸不喷油),并察听柴油发电机运转的声音有无变化:若没有变化说明这缸原来就不作业;声音变化越明显,说明这缸原来作业得越好。当遇到柴油发电机有异响时,也可以用逐缸断油法察听是哪一缸有“异”响:断油后、异响会明显减弱。
详细用于柴油发电机启动后的较初阶段,用手触摸各缸排气歧管的温度:正常状况下各缸的温度基础相同;若发现某缸排烟歧管处的温度明显低于其它缸,说明该缸喷油量小或不喷油、或喷油后没有发火燃烧。在柴油发电机作业一段时间以后,因为排烟歧管间传热的关系、这种温差现状就不明显了。这可以将排烟歧管拆下、观察缸盖上各缸的排气孔:排气孔干燥的,一般该缸作业较好;若排气孔处有柴油濡湿的情形,说明该缸工作不佳或不作业。
在柴油发电机启动时,若排气管不冒烟、说明柴油泵不供油;排烟管若冒白烟,说明柴油发电机过冷,柴油中含有水份或混合气没有发火燃烧;冒蓝烟说明烧机油(通常在晴天看得比较清楚);若排黑烟,说明点火太早、喷油器滴油或空气过滤器堵塞造成进气量不足。正常的烟色为淡灰色,在大负载时为深灰色;柴油发电机刚起动时,由于温度低,排烟较浓,柴油发电机走热后烟色会逐渐减少至正常。
卡在高压油管上的专用传感器,用测振动的举措可精确检修喷机油压力的变化。在柴油发电机运转流程中,也可以用手捏在高压油管上,凭手感觉高压油管脉动的大小,来判断高压油泵的供油情形。如果某缸供油量少或不供油,则其高压油管的脉动小或没有脉动。
在柴油发电机运行的流程中,用螺丝刀或听诊器触及喷油嘴体、可以听到柴油发电机正常作业的爆发声为有节奏的“当当”声,且有类似金属敲击的回音。若某处的响声没有节奏且无敲击声,只有不干脆的响声、说明该缸供油量过小或没有及时发火和完全燃烧,甚至没有发火燃烧。若某缸喷油咀雾化不佳、滴油,则会发现类似“敲缸”。的剧烈敲击声,配合断油法即可确定是哪一缸有故障。在预判柴油发电机主轴承和连杆轴承异响时,应避开着火敲击声的干扰。因为柴油发电机的着火敲击声较大,引起主轴承或连杆轴承的响声不易被听清。这时应采取猛踩加载踏板,然后突然收回的策略,趁柴油发电机降速之际查听轴承的损坏响声就比较明显。
将高压油泵上的高压油管拆下,用起动马达带动柴油发电机运转,每个喷油接头都应喷出高度不低于100mm的油柱,否则说明该缸有故障。
燃油系统是柴油发电机的重要构成部分,在柴油发电机作业流程中,燃油系统工作品质的好坏,直接危害柴油发电机的作业性能。而燃油装置本身损坏的复杂性、多样性,其故障清除具有一定的难度,对于燃油装置,怎生高效诊断燃油供给系故障并提前做好避免途径,在柴油发电机检修中起着至关重要的功能。为了使康明斯发电机组在运输程序中稳定运行,需要对柴油发电机的燃油质量进行严格检修。可以派遣相关人员专门负责燃油检修工作,其工作内容包括对燃油的品质进行严格把关。如果在检修流程中发现油色浑浊亦或燃油含水过多时,要及时对燃油进行过滤,继而增强燃油的清洁度、纯度和品质。当然,也要检测高压油管是否严格密封,喷油器是否完好无损,倘若发生故障等现象,要及时替换。
在研究柴油发电机规划机理的前提下,浅述其易见故障情形及危害主因,要从实用角度出发,关于其多见故障判断及检修技术进行深入的研讨,找到柴油发电机易发损坏部位和原由,继而提出高效的避免方案,从而防止重大人身装备故障的产生,继而降低不必要的损失。关于启动系统损坏导致柴油发电机组不能着火这一问题,要对马达进行更换。当然,也要对蓄电池、起动开关等进行维修替换,从而确保柴油发电机组正常运转。与此同时,也要确保柴油发电机组能够供给充足的气体。因而,对气孔阀也要进行修理。
要想使柴油发电机稳定运行,就需要防范柴油发电机在运转步骤中产生损坏,这就要求工作人员在对柴油发电机进行操作时,应按规范流程进行使用。当然,也要对柴油发电机零配件进行严格检修,对于破损的零部件,要及时更替,可以对燃油泵、喷油嘴等进行检验修理,从而使柴油发电机在运行流程中避免很难起动现状的发生。
通常情况下,机油泵因为长时间运行,难免会产生磨耗破坏等情形。机油泵的驱动齿轮会产生与驱动轴无法完全吻合等情况,因而,工作人员要对磨耗破坏的机油泵进行及时更替,以免危害康明斯发电机组的正常运行,从而减小机油泵给销售中心发展带来的巨大损失。
为熟悉决油路渗油严重这一问题,要对油路进行按期检测。对油路连接的密封处进行自己检测,是否密封严密。当然,凸轮轴的轮轴套也不可以过松,限压弹簧也不可以太软。这些细节作业要落到实处,唯有如此,才能减免油路泄露事故的发生。
康明斯发电机组在备载供电装置中占有重要地位,是企业保证作业和生产的重要工具。但是,康明斯发电机组在运转程序中难免发生损坏,因而,要对柴油发电机组出现的损坏进行诊断,并提出切实可行的修理办法,继而确保柴油发电机正常运转。从以上本文的解读和详述当中可知,深入探究柴油发电机常见故障判定与排除方案非常重要,有利于提升柴油发电机损坏检修和检验的效率与能力。望此次探求的内容和结果,能够获得相关修理人员的重视与关注,并从中得到一定的帮助,提升柴油发电机损坏修理的质量。
柴油发电机组国家标准和安装资质要求
摘要:柴油发电机组作为备用电源,在电力、石油、医药等领域有着重要的应用,其安装需要满足一定的资质要求。因此,安装企业需要拥有电力、机械等多项专业的工程技术人员,并具备一定的管理实力和现代化机械设备。只有资质完整的施工单位,才能更好地**其正常、安全、稳定地运行。一、柴发安装的资质要求在我国,从事柴油发电机组安装工作,需要满足一定的资质要求。一般来说,需要具备以下资质:1、施工资质安装柴油发电机组需要进行工程施工,因此需要具备相应的施工资质,否则无法合法施工。施工资质是由国家相关部门颁发的“承建工程、专业承包、劳务分包、监理”等资质。在申请施工资质时,需要提供企业工商营业执照、税务登记证、组织机构代码证、安全生产许可证、机构代码证等相关资料,并*施工负责人。一般情况下,电力工程专业承包二级及以上资质,这是柴油发电机组安装的基本要求之一。取得这一资质,需要具备一定的资金、技术和管理实力,以及一定的经验和业绩条件,能够承担更大规模、更高难度的电力工程项目。2、电气资质柴油发电机组的安装不仅需要施工工人,还需要具备电气能力的工程师进行电气设计和调试。因此需要具备相应的电气资质,如“电力监理”、“一级电气工程建设”、“电气工程师”等。电气资质是**电气工程质量和安全的重要一环,必须要由具备相关资质的工程师进行施工和调试。安装工程师持有电工工程师证书,这是柴油发电机组安装的技术要求之一。取得这一证书,需要通过国家规定的考试,并具有一定的学历背景和工作经验,能够独立完成柴油发电机组的安装、调试等工作。此外,安装单位应拥有一定的安装经验和成功案例。柴油发电机组安装需要丰富的实践经验和技术技能,只有具备一定的安装经验和成功案例,才能更好地应对各种工作难题。 二、柴发产品国家标准 1、柴油发电机组基础标准 GB/T 2820-2009《往复式内燃机驱动的三相交流发电机组》是柴油发电机组的基础标准,规定了柴油发电机组的术语、分类、技术要求、试验方法等内容。该标准适用于额定功率在3kW至5000kW之间的柴油发电机组。2、柴油发电机组性能标准 GB/T 2900.36-2008《电工术语发电、输电、配电和电力转换》规定了柴油发电机组的性能术语和定义,如输出电压、输出频率、功率因数、燃油消耗率等。这些术语和定义对于评估柴油发电机组的性能至关重要。 GB/T 2820.1-2019《往复式内燃机驱动的三相交流发电机组第1部分:用途、分类和额定值》规定了柴油发电机组的额定值和用途,如额定功率、额定电压、额定频率等。这些额定值是评估柴油发电机组性能的重要指标。3、柴油发电机组安全标准 GB 11095-2011《固定式柴油发电机组通用技术条件》规定了柴油发电机组的安全要求,如排气系统的设计和安装、燃油系统的安全保护、电气系统的安全接地等。这些安全要求是确保柴油发电机组安全运行的基础。 GB/T 30891-2014《内燃机及装用内燃机的产品噪声限值》规定了柴油发电机组的噪声限值,以确保柴油发电机组在运行过程中产生的噪声符合环保要求。4、柴油发电机组环保标准 GB 17691-2005《车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段)》规定了柴油发电机组的排放限值,以减少柴油发电机组在运行过程中产生的污染物对环境的影响。 GB 30510-2014《环境保护产品技术要求柴油发电机组》规定了柴油发电机组的环保技术要求,如排放控制、噪声控制、燃油消耗率等。这些技术要求有助于推动柴油发电机组向更加环保、高效的方向发展。 除了以上提到的标准外,还有一些与柴油发电机组相关的其他标准,如GB/T 14097-2018《中小型柴油发电机组通用技术条件》、GB/T 22475-2008《往复式内燃机驱动的交流发电机组自动电压调节器(AVR)技术条件》等。这些标准从不同方面对柴油发电机组进行了规范和要求,以确保其性能、安全和环保等方面的达标。 三、柴发安装的具体内容 柴油发电机组安装主要包括以下几个方面:1、土地、环境等准备工作的策划和实施柴油发电机组的安装需要选择合适的场地,并进行一系列准备工作,如土地平整、环境改造等。2、设备选型和进场安装在设计方案的基础上,对柴油发电机组进行选型和招标采购,确保设备的技术参数和品质符合要求。设备进场后,需要进行吊装、安装和固定等工作。3、电气和控制系统的调试柴油发电机组电气和控制系统的调试是整个安装过程中较为重要的环节之一。需要对设备的电路、保护、自动化控制等进行检查和调试,确保设备能够安全、稳定地运行。4、试运行和验收柴油发电机组安装完成后,需要进行试运行和验收工作,检查设备整体运行状况,确保其符合技术要求和验收标准。对于大型柴油发电机组的安装,还需要具备更高的技术和管理能力,资质要求也更为严格。通常需要电力工程专业承包一级资质,这是大型柴油发电机组安装的基本资质要求之一。此外,安装工程师需要具备更高的电气和机械技术素质,能够独立处理更加复杂的技术问题。 总结:总之,我国针对柴油发电机组制定了一系列产品和安装标准,涵盖了基础标准、性能标准、安全标准、环保标准等多个方面。这些标准的制定和实施有助于推动柴油发电机组行业的健康发展,提高产品质量和安装技术水平,**用户的安全和环保需求。同时,对于柴油发电机组的生产企业而言,遵守这些标准也是其产品质量保证和市场竞争力提升的重要**。数据中心应用案例
TCL科技数据中心1、概述以TCL科技数据中心为例,分享其柴油发电机组设备和环保安装项目过程。一般而言,柴油发电机组工作时产生的噪声约105dB(A),设备噪声会通过建筑结构、通风风道等途径影响大楼及周边空间的声环境,根据康明斯发电机厂家以往处理类似项目的经验,康明斯公司提出以下设备安装和噪声治理设计方案。2、设计依据及资料(1)《*人名共和国环境保护法》和《噪声污染防治法》;(2)《城市区域环境噪声标准》GB3096-93;(3)《工业企业厂界噪声标准》GB12348-1990;(4)《噪声与振动控制工程手册》机械工业出版社;(5)《建筑声学设计手册》中国建筑科学研究院建筑物理研究所;(6)《工业企业噪声控制设计标准》GBJ87-1985;(7)《环境工程手册环境噪声控制卷》高等教育出版社;(8)《噪声控制学》科学出版社。3、设计原则(1)经治理后风道外1米处周边环境实现《城市区域环境噪声标准》GB3096-1993,Ⅱ类区域要求,即周边噪声敏感区域白昼噪声值≤55dB(A);机房门外1米处噪声值≤65dB(A),达到国家低噪声工作场所要求。(2)采用成熟可靠、先进的处理措施,不影响原生产工艺;(3)设计选材质量优良,设备运行稳定,布局合理美观;(4)在达到设计要求基础上尽量节省投资;4、噪声声源分析柴油发电机噪声源频率较宽,主要由以下几部分组成:空气动力性噪声,进气噪声、排气噪声和冷却风扇噪声;表面辐射噪声,燃烧噪声、机械噪声和电磁噪声。其中燃烧噪声取决于燃烧方式和燃烧速度,机械噪声主要包括齿轮噪声、供油泵噪声、气门机构噪声、活塞敲击噪声等。5、治理措施治理发电机组噪声,必须针对不同发生部位,采用综合治理措施。设计采用室内吸隔声,进出风口安装消声插片,并辅以专业隔声门、通风换热等的综合治理措施。(1)通风散热进、出风道吸声柴油发电机工作时要求有相当的通风散热截面,因此在设计正常降噪的同时,必须考虑相应的通风散热措施。因进排风通道面积设计要求较大,其消声要求相当高。设计在进、出风道内安装吸声尖劈,保证通风散热要求的同时防止室内噪声通过风道外泄。进出风口设置细纹钢质网,阻挡蚊虫、杂质进入风道同时对进、排风不会产生负面影响。(2)烟尘排气噪声消声柴油发电机排气噪声高达105dB(A),机组自带消声器可降低部分噪声,但不能达到排放值的标准,在不增加柴油机背压的情况下,需将排烟管末端插入砖体排风道内,利用排风道内的吸声板块达到良好的消声效果,油烟也得到大风量的稀释,在排口处没有油烟雾的感观。同时由于柴油发电机排气温度高,运行时向室内辐射大量热量;在机组停机后,排气管内温度降低、管壁上容易出现结露现象,对机组安全造成影响。所以必须对柴油发电机排气管道进行隔热保温处理。(3)室内墙面及吊顶吸声为了提高整个柴油发电机房的隔声量,在机房室内四周墙面及顶部装设吸声体,降低室内混响噪声,使声功率得到降低而达到良好的隔声效果。吸声材料采用离心玻璃棉,厚50mm,密度48 kg/m3,导热系数0.03w/m2.K,较高使用温度450-550℃。护面材料采用表面喷塑的铝合金穿孔板,孔径φ=2mm,穿孔率P=25%,吸声体固定用轻钢龙骨及铝合金型材制作骨架。整个吸声体刚性好,挺括平直,外形美观,具有一定的装饰效果。结构吸声系数a=0.7,具有较好的耐蚀、吸声、防潮、绝热阻燃性能及装饰效果。吸声处理后,该房间吸声系数上升为a2=0.6,而处理前的一般砖墙抹灰平均吸声系数仅为a1=0.04,所以机房室内声压值降低:△L=10lg=11.8dB(A)。(4)隔声门将门改为福州乐信隔声门,隔声门采用各种标准隔声、吸声元件装配而成:优质冷却板作护面板、中间夹层吸声材料采用优质离心玻璃棉,吸声系数大于0.8,门和门框间用棉毡联接,以保证隔声效果。整个门具有设计合理外型美观、防潮、绝热、防火阻燃性能及装饰效果好、隔声性能好等优点。厚 度(mm)体积密度(kg/m2)隔声量dB125250500100020004000240480394244475652厚 度(mm)体积密度(kg/m3)频率(Hz)的吸声系数12525050010002000400050480.911..051.061.171.051.18厚 度(mm)面密度(kg/m2)频率(Hz)的隔声量(dB)125250500100020004000215.6213629344245 如不作吸声处理墙面和门、窗平均吸声系数低于a=0.01,则:TL实≤43+10lg0.01=43-20=23dB由于门的漏声,实际测量隔声量<17dB(A)。通过采取吸声、隔声结构,以及更换为隔声门等多种措施后,可将室内平均吸声系数提高到0.35,则:TL实=43+10lg0.35=38.4dB理论可达到38dB的降噪值,实际可实现隔声30dB(A)以上的要求。(5)柴油机减振处理 柴油机基座安装福州乐信减振器,减少振动及噪声,并且一定程度上解决由于设备振动而引起设备损伤等问题。制造工业应用案例
制造工业应用案例 在制造工业应用领域,柴油发电机主要用于为生产线、机器设备和工厂提供稳定的电力供应。当电网停电或电压不稳定时,柴油发电机能够迅速启动,确保生产线的持续运转,避免因停电造成的生产损失。此外,柴油发电机还常用于石油、化工、钢铁等重工业领域,为这些行业提供可靠的电力**。 在工业及制造行业,电力的重要性甚至关乎企业的生死存亡,拥有稳定可靠的电力供应,对工业及制造行业正常运转十分重要,然而,在当前的电力供应大环境下,却不能保证永久稳定供电,总会出现这样那样的中断供电,如果断电,又没有备用电源供应方案,对企业来说,可能是致命的,生产设备停机的每一分钟都会花费金钱,因此,投资柴油发电机组,它可为工业设施提供可靠的供电。 其实,柴油发电机组的主要用途就是提供充足的电力供应,无论是常用的还是应急的备用柴油发电机组,都是随时随地为其它设备提供可靠且稳定的电源做准备。综上所述,柴油发电机在各个领域都发挥着重要作用,为各种应用场景提供稳定的电力支持。随着科技的进步和工业的发展,柴油发电机的应用场景还将不断扩大,其在未来社会的发展中将继续发挥重要作用。高层建筑应用案例
高层建筑应用案例超高层建筑应设柴油发电机作为应急电源或备用电源。设置在超高层建筑内的柴油发电机,应根据负荷大小,单台电动机较大起动容量,供电半径等因素确定柴油发电机的额定输出电压。柴油发电机组在超高层建筑中既可作为应急电源使用,也可作为备用电源使用。低压柴油发电机组(400V)较大单台并机容量不得大于1600kW。如要进行并机运行,可采用高压柴油发电机组。一、项目概况1、用户背景(1)项目名称:深铁阅山境花园柴油发电机房隔音降噪工程;(2)开发商:深圳地铁置业集团有限公司;(3)物业类型:安居房、其他、商品住宅、商业;(4)项目地址:南山区留仙大道与九号路交汇处;阅山境发电机房长约20米,宽约7米,高约4.5米。围护结构中墙体为240水泥砖墙(乳胶漆面)、普通建筑百叶窗、岩棉彩钢板顶、钢制普通门(带轨道)。机房内布置分别为1台350千瓦、1台450千瓦、1台720千瓦柴油发电机组。该阅山境发电机房距离北侧厂界约40米,厂界外即为居民区。阅山境发电机房的建筑百叶窗及钢制普通门(带轨道)均面向楼盘北侧厂界。机房内空压机为24H运行。根据现场勘查情况,阅山境发电机房内设备运行时产生的噪声对楼层北侧厂界外居民区产生影响,需进行治理。2、阅山境周边配套设施(1)周边商业配套齐全,有6万㎡的塘朗城广场、近10万㎡宝能城环球汇、和4万㎡众冠时代广场,以及具有33.8万㎡的商业设施的留仙洞总部基地。(2)医疗配套:含2000张床位的深圳大学总医院(在建)、南方科技大学医院、西丽人民医院大学城社区健康服务中心;(3)人文体育设施齐全,大学城体育中心包含两馆一场即体育馆、体育场、游泳馆和室外网球场、篮球场、排球场等附属体育设施。以及西丽文体中心(规划)、深圳市科技图书馆等;(4)一站式教育配套齐全。项目自身配建6班幼儿园。周边小学有塘朗小学、南科大实验一小、南科大实验二小(隶属南山科技大学实验教育集团);小区配建初中为深圳大学附属外国语中学。(5)景观资源丰富:拥有塘朗山公园、麒麟山庄、大沙河公园、西丽湖、长岭陂水库、西丽高尔夫球场等生态资源。二、成本造价深铁阅山境花园柴油发电机组采购安装及环保工程造价单序号汇总内容单价(¥)数量合计(¥)1产品名称:柴油发电机组(电喷系列)备用功率:350KW 常用功率:320KW机组型号:KC350GF控制系统品牌:郑州.众智255000.001台255000.00发动机品牌:东风康明斯制造商:东风康明斯发动机有限公司发动机型号:QSZ13-G2发电机品牌:斯坦福制造商:康明斯发电机技术(中国)有限公司发电机型号:S4L1S-F4 /HCI444F(两款可选)2产品名称:柴油发电机组(直喷系列)备用功率:450KW 常用功率:400KW机组型号:KC450GF控制系统品牌:郑州.众智325000.001台325000.00发动机品牌:重庆康明斯制造商:重庆康明斯发动机有限公司发动机型号:KTA19-G3A发电机品牌:斯坦福制造商:康明斯发电机技术(中国)有限公司发电机型号:S5L1D-C4/S5L1S-C4 /HCI544C(三款可选)3产品名称:柴油发电机组(直喷系列)备用功率:720KW 常用功率:640KW机组型号:KC720GF控制系统品牌:郑州.众智640000.001台640000.00发动机品牌:重庆康明斯制造商:重庆康明斯发动机有限公司发动机型号:KTA38-G2B发电机品牌:斯坦福制造商:康明斯发电机技术(中国)有限公司发电机型号:S6L1D-C4/HCI634G/LVI634C5发电机房环保工程80000.003项240000.005.1隔音降噪系统5.2尾气净化系统总造价(含13%增值税)1460000.00 三、机房隔音降噪方案1、厂界噪声定义厂界噪声专业术语是指在法律文件(如房产证、土地使用证)中规定的业主所拥有使用权的场所边界产生的噪声,工业厂界噪声就是指在企业场所边界监测到的噪声。倘若厂界噪声超标影响到周边居民区或者环保部门有噪声指标,则此类生产环境都需要进行规范治理。2、厂界噪声定义标准厂界噪声共有5类标准,对于居民区噪音规范标准,《*人民共和国城市区域噪声标准》中则明确规定了城市五类区域的环境噪声较高限值:(1)疗养区、高级别墅区、高级宾馆区,昼间50dB、夜间40dB;(2)以居住、文教机关为主的区域,昼间55dB、夜间45dB;(3)居住、商业、工业混杂区,昼间60dB、夜间50dB;(4)工业区,昼间65dB、夜间55dB;(5)城市中的道路交通干线道路、内河航道、铁路主、次干线两侧区域,昼间70dB、夜间55dB(夜间指22点到次日晨6点)。3、施工方案① 在发电机排烟道消音:在发电机排烟道上按装设计二级阻尼性消声器器消音;② 在发电机排风口处的隔音:发电机排风口处安装一座出风消音槽;柴油机工作时,产生大量的热量,此热量要抽(排)出机房,以保证机房温度不超过50度,为发电机组提供一个正常的工作环境。③ 在发电机进风口处的吸音:在机房发电机的后上方安装一座有动力入风消音槽;每台发电机组工作时需要大量新鲜的空气,主要用于柴油机燃烧,发电机冷却。④ 在机房整体隔音:在发电机房的房门上安装隔音门,墙面安装吸音消音材料。酒店商场行业应用案例
酒店商场行业应用案例持续稳定的供电,对于大型商业场所来说十分重要。地处自然灾害频发、用电密集地区的商业场所,停电情况发生得越频繁,所造成的损失就会越大。拥有可靠的备用电源方案,可以有效避免因停电造成的经济损失。一个位于东南亚国家沿海城市的大型商业广场,选中康明斯电力为该广场的4栋建筑及其配套设备的提供备用电源方案,需求总计为13.5MW。被大型商场选中,康明斯电力快速响应客户需求,用专业实力为客户创造价值!定制化方案,满足客户要求该项目包含9台1500kW 康明斯电力开架款发电机组。机组配备康明斯发动机,动力强劲可靠,稳定安全,在电网断电时能够确保持续供电,**项目的稳定运行。此外,客户对于机组并机系统的合理配电、机组的优先启动顺序,以及机组的消音降噪效果有着较高的要求。针对客户需求和现场使用环境,康明斯电力专业的工程技术方案工程师决定为该方案采用高知名度的独立并机系统,每台机组拥有一个独立的控制系统,能依据实际情况独立运行也能并机运行,灵活可靠,较大程度地满足客户需求及实际使用要求。在噪音控制上,该项目机组采用了一款特殊定制的消声器,增强降噪效果,减少机组运行对周边环境造成的噪音影响。备用用电,避免经济损失在用电高峰或自然灾害造成断电,无法保证商场正常供电的情况下,该方案机组能够立即供电,确保商场的正常运营。即使在长时间断电时,该方案机组能够连续运行至少2周,较大程度地减少了断电造成的经济损失。在这个项目中,被客户选中,康明斯电力自身“硬本领”不仅仅在于强大的工程技术方案解决能力、帮助客户避免停电造成的损失,还在于康明斯电力优异的产品质量和满意到位的售前售后服务。正是由于康明斯电力始终站在客户角度,以客户需求为本,才能更好地为客户创造价值!康明斯电喷柴油机故障诊断的解决思路
摘要:康明斯电喷发动机在柴油发电机组上的应用越来越普遍。电控系统在提高柴油发电机组性能的同时,也使发动机的故障诊断变得复杂起来。发电机组维修人员通过解读故障代码,大多数都能判明故障可能发生的原因和部位。然而,在对发电机组维修时,若仅仅靠故障代码寻找故障,往往会出现判断上的失误。因此,在对电控发电机组进行维修时应综合分析判断,结合发电机组故障的现象来寻找故障部位。 一、康明斯电喷机型的组成和原理1、康明斯电喷柴油机电控系统的组成以康明斯600KW发电机组为例,配置的是康明斯QSK19电喷柴油机。QSK19系列发动机电控燃油喷射系统由三个基本组成部分构成,分别为输入(开关和传感器)、ECM(对输入信号进行分析)、执行器(按照ECM输出信号动作的控制阀总成)。QSK19系列电控燃油喷射系统的核心部分是执行器一控制阀总成。泵产生的燃油输送至控制阀总成,该总成由一个切断电磁阀、两个燃油执行器阀和两个燃油压力传感器组成。ECM安装在总成壳体的前部。控制阀总成有一个燃油进口和两个燃油出口,每个燃油出口分别由各自的执行器控制着。燃油油道执行器控制喷油器喷多少燃油,燃油正时执行器控制喷油器何时喷油。2、康明斯柴油电喷系统原理QSK19系列电控燃油喷射系统就象PT燃油系统那样采用压力/时间概念。PT系统完全是机械式的并依靠机械方法调整燃油流通面积来控制燃油压力,而QSK19系列燃油系统通过电子方式调整执行器的燃油流通面积来控制燃油压力。3、康明斯电喷柴油机使用时应注意的问题(1)从发动机的油水分离器中排出水和沉淀物。定期维护并更换燃油预滤器滤芯。(2)注意油箱及管路的清洁。(3)注意油箱通风孔及其附近的清洁,避免污物、灰尘和水由此进入油箱。(4)绝对不要用水清洗发动机。(5)当需要在设备上进行焊接时,必须先拆下发动机电瓶的“正”,“负”极电缆并断开发动机的31及21针连接器。(6)注意发动机进气系统管路的密封及焊接部位管内的处理。图1 电控柴油机燃油系统原理二、柴油电控系统故障诊断思路柴油电控系统是一个精密而复杂的系统,对发动机的运转性能有很大的影响,不论是该系统的ECU、控制线路还是其它任何一个传感器、执行器出现故障,都会在一定程度上影响发动机的起动性、运转稳定性、动力性、经济性等。而造成电喷柴油机不工作或工作不正常的原因可能是电子控制系统,也有可能是电子控制系统以外其它部分的问题,也可能是机械方面的;如果我们能够遵循电喷机型故障诊断的一些基本原则,故障的诊断与排除便可迎刃而解。电喷机型故障诊断排除的基本原则可概括为以下几点。1、牢记故障并非一定出在电喷系统如果发现发动机有故障,而故障警告灯并未点亮(未显示故障代码),大多数情况下,该故障可能与电喷系统无关。此时,就应该像发动机没有装电喷系统那样,按照基本诊断程序进行故障检查,如检查发动机有无异响、缸压是否正常等。否则,可能遇到一个本来与柴油电喷系统无关的故障,却检查柴油电喷系统的传感器、执行器和电路等,花费了很多时间,而真正的故障反而没有找到。众所周知,乱拆瞎碰,只能将小故障变成大故障,甚至造成无法挽回的损失。因此,必须首先对发动机的故障现象进行故障分析,了解可能的故障原因有哪些,然后再进行有针对性的检查。只有这样才可避免故障检查的盲目性,既不会对与故障现象无关的部位做无效的检查,又可避免对一些有关部位漏检而不能迅速排除故障。2、先对电子控制系统以外的可能故障部位予以检查能以简单方法检查的可能故障部位先予以检查。比如直观诊断较为简单,我们可以用看、摸、听等直观检查方法将一些较为显露的故障迅速地找出来。如检查电控系统时,先检查各传感器与电脑的连接电线束是否松动或断开,电线是否有磨破或线间短路、断路的现象,电线插接头是否插接就位,有无腐蚀现象,以及各传感器是否有明显的损伤等。直观诊断未找出故障,需借助仪器仪表或其它专用工具来进行诊断时,也应对较容易检查的先予以检查。3、掌握电喷系统的工作原理和构造特点由于康明斯柴油机电喷系统的构造和工作原理比较复杂,在检查与排除电喷系统的故障时,必须掌握该柴油电喷系统的工作原理和构造特点,参阅该车型的详细技术资料;发动机的某一故障现象可能是以某些总成或部件的故障较为常见,如油门位置传感器、控制器电磁阀、喷油器等,应先对这些常见故障部位进行检查。若未找出故障,再对其它不常见的可能故障部位予以检查。4、要准确判断故障的部位是非常困难的当电喷发动机运行时,故障自诊断系统监测到故障后,便以代码的方式将该故障储存到电脑的存储器内,同时通过警告灯报警。因此,检修时应优先借助于ECU的故障诊断接口(插座),按特定的程序用人工跨接的方法或使用故障诊断仪,将ECU存储器中的故障代码调出,并以灯光闪烁的方式或直接由诊断仪显示屏以数字形式显示出来,从而帮助维修人员快速正确地判断故障的类型和范围。待故障代码所指的故障消除后,如果发动机故障现象还未消除,则再对发动机可能的故障部位进行检查。故障排除后,同样按特定的程序,用人工方法或借助于诊断仪,将存储在ECU存储器中的故障代码清除掉,以便记录和存储新故障码。5、性能和电气线路良好性,常以其电压或电阻等参数来判断如果说没有这些数据资料,系统的故障检查将会很困难,往往只能采取新件替换的方法,这些方法有时会造成维修费用猛增且费工费时。因此在检修时,应准备好有关检修数据资料。除了从维修手册、专业书刊上收集整理这些检修数据资料外,另一个有效的途径是利用无故障发电机组对其系统的有关参数进行测量,并记录下来,作为日后检修同类型发电机组的检测比较参数。如果平时注意做好这项工作,会给电喷系统的故障检查带来方便。6、传感器对设备性能的影响有些人认为电控系统中每一个传感器性能的改变都能很大程度地改变发动机的性能,其实这种认识有很大的局限性因为电喷系统中虽然有几种传感器对喷油量有较大的影响,例如油门位置传感器、发动机转速传感器。但还有许多传感器在控制喷油量时只起一个很小的修正作用,例如,外界大气压力传感器、进气歧管温度传感器等。它们把这些信号传给*处理器后,*处理器在计算喷油量和喷油正时时,对这些信号只是取一个很小的修正系数,因而并不会对发动机的运行工况造成很大的影响。因此,在分析故障时,应该把一些影响不是很大的传感器放在其次考虑的位置,尤其对于故障现象明显恶劣的车,不要用过多的时间去研究一些无足轻重的传感器。三、故障诊断的注意事项柴油电控故障代码在以下三种情况时,易出现错误信息,希望引起维修人员注意。1、传感器有故障而自诊断系统没有监测到控制电脑(ECU)对传感器信号进行检测时,只能接受其设定范围之内的传感器非正常信号,从而判别传感器的好与坏,记录或不记录故障代码。一旦解读故障代码故障后,只要对相应的传感器、导线连接器、导线进行检查,找到并排除短路、断路的故障即可。但是,若因高温、老化等原因致使传感器灵敏度下降、反应迟钝、输出特性偏移等,则自诊断系统就测不出来了。尽管发动机确有故障表现,但是自诊断系统却输出了正常的无故障码(故障指示灯不闪烁)。这时就应该依据发动机的故障征兆,在排除机械故障后,再根据电控系统工作原理进行分析判断,继而对相关传感器单体进行有针对性的检测,以便找到并排除传感器故障。2、使用维修不当也可能引发错误的故障代码在对电控发电机组实施维修时,由于维修人员维修不当或者操作失误,也会导致故障自诊断系统输出错误的故障代码。例如,在发动机运转过程中,检修人员随意或者无意把传感器插接头拔下,每拔下一次传感器插接头,自诊断系统就会记录一次故障代码。另外,若在上一次维修时,由于操作不当而未能完全清除掉旧的故障代码,那么电脑也同样将原来旧的故障代码保存其内,因此在对电控发电机组维修时也要加以注意,不应造成不必要的人为故障代码,给维修工作带来混乱和困难。3、ECU监测失误,自诊断系统可能显示错误的故障代码因此当自诊断系统出现故障代码以后,还应该与发动机的实际故障症状进行分析比较,以得到正确合理的判断,不应该将故障代码当作排除故障的唯一依据。 总结:总之,康明斯电喷柴油机在柴油发电机组上的应用越来越广泛,只有真正掌握柴油电喷系统的工作原理,克服畏惧心理,运用合理的故障诊断方法,该先进技术才能够被掌握,为矿山提高经济效益作出贡献。带静音箱外罩的柴油发电机组进风方案
摘要:针对现用沙漠用带集装箱外罩的柴油发电机组空气整体过滤方式存在的易堵塞问题,设计出了一种新型集装箱式柴油发电机组降噪通风解决方案,对机房内不同的设备区别对待,已达到较终在室外应用效果良好性。一、整体空气过滤式解决方案介绍带集装箱外罩的柴油发电机组采用了常规的整体过滤式空气过滤解决方案,如图1所示。利用柴油机自身的散热风扇作为进风动力,室外空气从机房的一端进入,由另一端排出。进气端采用“鲨鱼腮”式多层下进风方式,不仅增加进气面积,也能避免风沙直接吹入机房,一级过滤置于进风口处,采用20目不锈钢丝网做滤网,可过滤掉颗粒较大的沙石。滤网水平放置,具有一定的自洁作用。二级过滤采用初效或中效箱式、板式或袋式过滤器。出气端采用自垂活动百叶。机器工作时,百叶在水箱散热风扇的吹动下打开;机器停止时,百叶可自动关闭,防止沙尘倒灌入机房。这样,机房就将沙尘阻挡在外面,进入的空气可以全部满足机房内各设施对通风洁净度的需要。但这种解决方案存在很多弊端:(1)二级过滤器容易堵塞,特别是在沙尘暴天气,数小时即可使过滤器堵塞。进气量不断减小,机房内负压不断加大,气温升高,柴油机供气严重不足,机器功率下降。(2)由于机房内负压增大,机房外的雨水会通过缝隙被吸入机房内,造成机房内积水。有的二级过滤器的滤布因负压作用发生破裂,风沙过滤作用完全丧失。图1 集装箱式柴油发电机组空气进风过滤系统二、新型空气过滤解决方案保留原一级过滤网,去掉二级过滤器。在柴油机燃烧进气部位以及发电机和控制屏进风部位,分别设计专用导流罩和过滤器。保留一级滤网、去掉二级过滤器后,由于其采用的是20目不锈钢丝网,孔隙较大,只能阻隔大颗粒沙石,含较细沙尘的空气则畅通无阻,滤网很难被封堵,清理滤网的间隔时间可以延长至1周以上,保证了机器较长期地正常工作。阻隔大颗粒沙石是因为其容易造成机器表面的磨损及在机房中沉积。允许颗粒细小的沙尘进入是因为其既不影响机器的散热,也不会划伤机器表面,而且很容易被风扇排出,不易沉积。二级过滤被简化掉后,机房内的负压减小,风量和风速均加大,此时细沙尘在机房内几乎无存留。发电机和控制屏散热都有各自的进排风口和风扇,空气由进风口吸入用来冷却内部发热的电气元部件,然后由排风口排出。可以对其进、排风口进行专门的设计改造。排风口只要设计在不正对机房风向的方向即可,以免沙尘由排风口倒灌入设备,或者影响正常排风。进风口则设计成、导流罩模式。导流罩的迎风面应设计成流线型,进风口设计在导流罩的背风面。由于进入机房的风量很大,风速也很大,当风沙快速掠过导流罩时,沙粒在惯性作用下会一直向前冲,被反吸回的空气中含有的沙尘就很少了。如果在导流罩入风口处再设置一套易于拆装清理的小型板式过滤器,就可保证进入空气的洁净度。又由于它们需要的通风量相对于整个机房的通风量来说少之又少,因此清理滤网的间隔时间可以延长至1周以上,保证了机器较长期地正常工作。柴油机燃烧进气选用沙漠空气过滤器,必要时在其进风口处也可设置相应的导流罩,以减轻滤清器的负担。采用新型空气过滤解决方案设计的前10台机房发到伊拉克。维保人员7天巡检一次,机房要1周无人值守持续运转。经过一段时间的使用,无论是否有沙尘天气,机房都可以持续正常运转,再未出现滤器堵塞引发的问题。 总结:实践证明,这种利用“疏”“堵”结合的设计思想设计的新型沙漠用机房空气过滤解决方案,在保证机房设备用气的基础上,成功解决了常规整体过滤式空气过滤解决方案中过滤器易被堵塞的问题,适合在沙漠地区长期稳定地使用。康明斯柴油发电机故障诊断系统
摘要:运用故障树分析法进行康明斯柴油发电机的故障分析,并转化成二叉故障树;采用产生式规则和框架表示法相结合构建知识库;采用层次分析法设计了故障诊断专家系统。基于Windows平台和Del-phi7.0语言开发了故障诊断专家系统。为用户提供了一套简单、实用的故障诊断工具,给*装备的故障诊断带来极大的方便。 康明斯柴油发电机具有动力性强、使用可靠和适用性强等许多优点,目前广泛应用各系列康明斯柴油发电机组上。由于该柴油发电机的控制、检测和电器系统现代化程度高,组成结构比较复杂,技术会含量高,相关技术资料和维修数据比较缺乏,且受生产厂商技术封锁的限制,给康明斯柴油发电机的故障诊断和维修带来很大的不便。为此,本文运用现代故障诊断理论,研究康明斯柴油发电机的故障诊断技术和方法,设计开发康明斯柴油发电机故障诊断专家系统软件。一、故障诊断专家系统的总体设计专家系统的基本设计思想就是将知识和控制推理策略分开,形成知识库。专家系统在揄策略的控制下,利用存储起来的知识分析与处理问题。这样在进行故障诊断时,用户为系统提供一些已知数据,然后从系统中获得专家水平的故障诊断与维修方法的指导结论Ⅲ。1、模型选择与构建层次分析诊断模型主要是利用系统结构分级原理将复杂系统分为系统级、子系统级和部件级等几个层次,然后对不同的层次,分别采用与它较为适合的具体层次诊断方法确定故障的部件和原因,直至到达预定层次并获得相应的结果为止。层次分析诊断模型是整个康明斯柴油发电机故障诊断专家系统设计的主导思想,诊断知识的表示和诊断推理机制都围绕此进行设计。结构工程机械柴油发电机的实际维修情况,本文研制的系统采用层次分析诊断模型。在建立模型时,主要采用按照结构分解的方法。2、总体设计首先按层次分析法对康明斯柴油发电机的系统结构进分级,即按各部分析隶属关系,用树状结构对柴油发电机系统进行分解,顶层是系统本身,下一层是组成系统的各子系统,再下一层是各子系统的组成部件,直至不可分为止。知识库的构建是采用故障树转化成二叉故障树、框架和产生式相结合的方式来表达专家知识。根据表示形式、性质、层次、内容来构建完整知识库。推理机采取正向推理与反向推理相结合的方式,根据知识库中的知识和用户提供的事实进行推理,对康明斯柴油发电机进行故障诊断。即运用数据库中的初始故障状态或人机对话所获得的故障状态,对知识进行搜索、推理和匹配。推理机是运用机器模拟专家的思维机制,用算法表示来分析问题、解决问题。数据管理主要利用Delphi面向对象的编程技术,把知识库管理延伸到用户界面,让用户不依赖数据库软件就能进行数据操作和管理,包括数据添加、修改、删除等。为使专家系统具备实用价值,在系统准确诊断出设备中存在的问题后,进一步向用户提供一些建议和方法,较终解决康明斯柴油发电机存在故障维修问题。人机界面是用户与专家系统交互的接口,由输入和输出两大部分组成。一方面,它把一些信息或命令(由键盘等获得)进行识别、理解后输入给系统;另一方面,把专家系统产生的诊断结果由内部形式转换成人类能够接受的形式,再输出给用户。其总体设计流程如图1所示。图1 柴油机诊断系统总体设计流程二、故障诊断专家系统知识库设计1、故障树分析法(1)建树方法和步骤。故障树的建树方法可参见参考文献。国标(GJB768.1-89)对故障树建立步骤有严格的规定。其基本步骤可归纳为,首先确定故障树的顶事件,建立边界条件,通过逐层次分解得到原始故障树,然后进行原始故障树的简化,得到较终的故障树,供后续的分析计算与故障诊断使用。(2)二叉故障树。二叉故障树是层次数据结构的一种,它由节点和分支组成。其中节点用于存储信息或知识,分支用于连接各节点。在故障诊断系统的知识表示中,二叉树是一种常用方法,这种数据结构能够清晰表示故障现象和各种故障原因之间的关系。在故障诊断专家系统中,为了便于数据库存储和算法的实现,可将普通故障树转化为二叉故障树。2、专家系统知识库设计专家系统的工作过程是获得知识并加以应用的过程。处理知识的首要问题就是如何表示知识的问题。知识的表示就是描述所做的一级约定,是知识符号化的过程,即把知识编码成为一种合适的数据结构。康明斯柴油发电机故障诊断专家系统知识库,主要采用框架表示法,库中的每条知识又是采用产生式规则来表示。(1)产生式规则表示法。产生式规则表示法将*信息与某些行为相关联,对新信息或需要执行的过程作出断言。产生式规则表示的知识中,一般都引入阈值和权值。其中阈值用来表示应该肯定还是否定的限度,权值表示同一规则中不同条件的重要程度,如果条件的置信度大于阀值,则该条件表示一条肯定事实,否则该条件表示一条否定事实。如:If蓄电池电压<24V(0.5,1.0)then蓄电池充电或更换(0.5,1.0),如果已知蓄电池电压<24V的可信度只有30%(0.3),小于其阈值(0.5),则不能认为此规则成立。而“权值”是反映其功能关键程度、故障概率和检测代价的参数,权值越大说明该条件越重要,在推理过程中更应作为优先考虑的对象。(2)框架表示法。针对本文用二叉故障树来分析康明斯柴油发电机故障,虽然其内容不同,但都可分成顶事件、中间事件和底事件,都有故障树节点,存在一些共同属性,因此我们可以把这些共同属性分离出来,建成一个上层框架,再把各类事件独有的属性分别分别构成下层框架,并可在下层框架间设立一个专用的槽(称为“AKO”),反映上、下层之间的关系,指出其上层框架,以建立上下框架间联系,下层框架还可以继承其上层的属性和值,既减少知识冗余和保持知识一致性,又节约了时间和空间。3、专家系统知识库推理流程的具体实现(1)明确故障类型:先了解柴油发电机发生故障的现象,然后确定故障大致部位和所属系统或类型。例如检查冷却液渗漏,即可将故障大致定位于冷却系统进行诊断。(2)选择推理方式:比较明确的故障,宜采用确定推理,并得出明确的推理结果。如果故障现象比较模糊,则采用不确定性推理。(3)得出故障结论:依据推理,可以得出故障结论等信息,并提供给用户相应维修方法。三、专家系统的实现1、总体设计康明斯柴油发电机故障诊断专家系统设计的指导思想是:提供一个特定环境,协助用户进行故障诊断和维护。该专家系统采用Delphi7.0软件编写,由知识库、推理机和系统外壳三大部分组成,整合成软件则可分成故障查询、故障诊断、数据维护三大模块。2、故障诊断模块结构设计根据系统故障层次模型和系统的故障树分析结果,结合建构的系统故障诊断数据库,开发出系统的故障诊断模块,其结构框架如图2所示。3、故障诊断模块的程序实现本系统设计对康明斯柴油发电机两大机构和五大系统进行故障诊断。以“柴油发电机起动困难或不能起动(排气冒烟)”故障为例,阐述故障诊断的步骤。进入故障诊断主界面后,选择“燃油系统”下拉菜单,选定“柴油发电机起动困难或不能起动(排气冒烟)故障”,根据提示,进行选择或输入置信度等值,根据提示进行故障诊断,诊断过程略。 图2 康明斯柴油机故障诊断模块结构图总结:本文在深入分析了康明斯柴油发电机典型故障后,结合当前先进的故障诊断技术,将故障树分析法和专家系统应用于柴油发电机的故障诊断。用层次分析法构建了柴油发电机的故障诊断模型,建立了专家系统的知识库和推理机,完成了康明斯柴油发电机故障诊断专家系统的开发。该系统界面友好,功能较全,提供了诊断、查询、维护等实用功能,运行流畅,方便*等基层单位用户进行故障诊断和维修。柴油发电机油路进空气的查找和排除方法
摘要:柴油发电机进入空气的现象表现为排气管发出"突,突"声,并间断地冒白烟,伴有柴油机转速下降,工作无力,严重时自行熄火,停车及加大油门后会有好转.松开喷油泵放气螺钉,有带气泡的燃油向外喷出,这说明燃油系统内有空气窜入,使柴油机喷油泵供油量减少。康明斯公司在本文中分析了柴油机燃油系统吸空故障发生的几种情况,并提出相应的解决措施。 一、康明斯柴油机燃油系统简介康明斯柴油机辅助燃油系统是专门为辅助柴油机而设置的,原理如图1所示。辅助柴油机自带有1个燃油输送泵、2级燃油滤清器及单体喷油泵,如图2l²所示。辅助柴油机配备2个交流电机驱动的辅助燃油泵,一个是连续工作制的主油泵,另一个作为备用泵。备用泵为断续工作制,由PK-2型液位仪进行液位控制。辅助燃油泵从机车下部的大燃油箱内吸油,泵入机车上部的辅助燃油箱。燃油从辅助燃油箱经逆止阀进入油水分离器,再经纸质滤芯过滤后进入辅助发电柴油机燃油系统中。一般地,当燃油泵输出管系(泵后)泄漏时,主要表现为燃油外渗,大部分能检查出来。而燃油泵输入管系(泵前)泄漏,则吸空,一般目测不出来,较难判断。正是由于机车辅助柴油机燃油系统特殊构造,其吸空故障与传统内燃机车此类故障处理上有很大的不同,下面作详细介绍。二、燃油系统吸空故障处理1、辅助燃油泵系统吸空故障处理这种故障主要原因是辅助燃油泵油封坏,造成泵前泄漏。燃油泵工作后,吸空,更换油封即可修复。如果是泵前管系泄漏,则处理非常困难。现场通常采用的方法是:将泵前管系两头封堵,注入一定压力(一般大于5 kg/cm²)的空气,外涂抹肥皂水查找或用手触摸。此法与通常检查制动机制动管系泄漏方法是相同的。查出并修复故障处所,再用上述方法复查确认。2、燃油泵系统吸空故障处理柴油机燃油泵向辅燃油箱供油的应急系统(具有重联功能),一旦辅助燃油泵系统失灵,而柴油发电机燃油泵系统(包括应急系统管系)吸空,同样能造成辅助柴油机不能启机。其原理与辅助燃油泵系统吸空是一致的,处理故障方法也基本相同。现场以粗滤器(轮检项目)安装不良造成吸空表现尤为突出。三、自备燃油泵系统吸空故障处理1、主要原因辅助柴油机体外燃油系统附件故障主要原因:油水分离器上盖密封垫安装不良(包括密封垫本身材质问题)造成自备燃油泵泵前进气;辅燃油箱没有油或密封不良,辅助柴油机启机时直接吸空,造成启机失败。这类故障可以看到油水分离器下部涡轮旋转时冒气泡。此时向油水分离器内加入燃油,直至加满即可排除。建议操作员启动辅助柴油机前,养成用柴油发电机燃油泵向辅燃油箱注满燃油的习惯。在辅助燃油箱第一次注油时(辅助燃油箱内没有油),采取机车燃油泵工作,开启辅油箱处的应急加油塞门,注油完毕后关闭。同时,应向辅燃油箱侧面的油水分离器内加入燃油,直至加满,以防止柴油机启机时吸空。实际上,自备燃油泵系统泵前管系泄漏均能造成吸空,机体内燃油系统吸空情况更为复杂,处理起来也困难得多。2、查找方法如果辅助柴油机运转时觉得燃油系统中似乎掺有空气的话(从转速的变化或气缸的声音可辨别出来),可以检查确定是内部管道(柴油机上)还是外部管道(从自备燃油泵到辅燃油箱)漏气,具体查找方法如下:(1)从齿轮泵(图2中的10)上拆下输油管道。(2)用一段长度合适的软管,把燃油从一个试验油箱中抽出。(3)辅助柴油机从这个油箱供油,进行运转。如果掺进空气的症状消退,则证明输油管道的漏气发生在外部管道。(4)把软管移到燃油滤清器的进油口,使辅助柴油机运转,通过燃油滤清器供油。如果仍然有空气存在,检查该滤清器是否装配正确,滤清器是否破裂,紧固镙钉和接头是否过紧,垫片是否密封不良等。齿轮泵接头上如装有一个观察窗口,将有助于发现掺入的空气。燃油滤清器如有部分堵塞,将引起功率下降,并使燃油泵密封件的漏气加剧。(5)将辅助软管和试验油箱移到辅燃油箱的供油管接头处,如果辅助柴油机从这个油箱中吸取燃料来运转的情况下,管道中无空气出现;而当柴油机从辅燃油箱中吸取燃料来运转时,没有空气出现,则要检查燃油管接头、竖管等的情况,看接头有无松动或破裂。3、自备泵泄漏检查自备泵后的泄漏与前文所述相同,只是通常情况下我们目测不到而已,因为其上盖是封装的。自备泵、燃油支管或喷油器都可发生内部漏气。下列方法有助于检查柴油机运行时的供油道漏气。把柔性塑料管连接到切断阀的螺塞上(该切断阀上接有支管压力表),把管的另一端放在容器内,把一个高质量的针阀装在这条塑料管中;关闭针阀,启动柴油机;再小心打开针阀,以增加燃油流量,如果输油管道中接有一段塑料管或装有观察窗口,则因管道中有足够的燃油在流动,就能够看到油中所夹带的空气泡。塑料管的作用是把油中的空气放走,这样便易于观察。(1)切断阀漏气:虽然此处输送管道不会发生漏气,但漏气的阀会使燃油泵和管道中的燃油泄漏到安装在低处的一个油箱里。切断阀若有漏气,柴油机将难于启动,但在启动后柴油机却会正常运转。检查切断阀密封填料中是否嵌有固体物。(2)喷油器中“0”型环漏气:如果喷油器本体下部的“0”型环漏气,则柴油机在荷载运转一个时期后,转入怠速时,进油通道将变成掺气油道。漏气通过一个不良阀座进入喷油器套筒,会使这种情况更为恶化。卸载前柴油机还能正常运转,但到卸载时燃油系统中便出现有空气存在的征象。如果喷油器喷油室座已有严重漏损的话,则要更换一个喷油器。在特殊情况下,可能还需要更换喷油器套筒。(3)自备泵漏气:用燃油灌满油泵壳体来进行检查,如果燃油随着柴油机怠速而被吸入油泵,则表明油封漏气。此外还有燃油支管泄漏、止回阀漏气等等。总结:康明斯辅助柴油机吸空故障原因复杂,机体内故障一般需要康明斯柴油机专业维修人员处理。日常保养方面,操作员启动辅助柴油机前,养成用柴油发电机燃油泵向辅燃油箱注满燃油的习惯。粗滤器、燃油泵油封、油水分离器上盖密封垫等易造成其燃油系统吸空处所要重点检查。经常观察油水分离器下部涡轮旋转时是否冒气泡,启机时和辅助柴油机工作时观察转速变化和辨别气缸声音,做到及时发现,防止问题扩大。柴油发电机组自启动的法规要求和操作步骤
摘要:柴油发电机组启动成功后,应先观察柴油机运行中的电压、频率、转速等参数是否正常,同时观察发电机组有无异常情况出现,包括烟色、声音、有无泄漏等。康明斯公司在本文中介绍了柴油发电机手动和自动启动流程的基本步骤,以及国标对其的法规要求。在实际操作中,还需注意安全操作和维护,确保柴油发电机的正常运行。 一、设备启动的法规要求 目前在行业中对于柴油发电机没有强制规定必须要自动启动,只是规定柴油发电机要设置自动和手动启动装置以及在多长时间内启动。所谓自动启动就是在没有人干预的情况下发电机启动。手动启动就是通过人去按启动按钮启动。(1)《高层民用建筑设计防火规范》GB50045-95(2005年版)第9·1·2条要求:一类二类高层建筑自备发电设备,应设有自动和手动启动装置,并能在30s内供电,当采用自启动有困难时,可采用手动启动装置。(2)《建筑设计防火规范》GB50016-2006第1·1·2条:一级负荷供电的建筑,当采用自备发电设备作备用电源时,自备发电设备应设置自动和手动启动装置,且自动启动方式应能在30s内供电。(3)《民用建筑电气设计规范》JGJ16-2008第13·9·7条:当消防应急电源由自备发电机组提供备用电源时,应符合下列要求:消防用电负荷为一级时,应设自动启动装置,并应在30s内供电。 柴油发电机组控制器操作系统框图二、自动操作模式 1、将选择开关旋至AUTO自动位置,进入自动操作模式。2、当施加一个遥控起动信号时将开始以下操作程序:3、遥控起动信号指示灯亮(如果设置了该指示灯功能)。4、起动延时继电器开始计时,以避免错误的遥控起动信号引发起动。该延时结束后,若系统设置了预热输出延时继电器,预热输出延时继电器开始计时,对应的辅助输出继电器动作。注释:如果在起动延时期间遥控起动信号撤消,系统将终止起动程序,返回待机状态。5、经以上延时后,停机电磁阀(燃油输油电磁阀)动作,对发电机组供油,起动马达投入起动。6、发动机按预先设定的时间进行盘车起动,若在起动期间点火失败,起动马达将退出,并等待一段间隔时间(该时间间隔也是预先设定的)后再次尝试起动。如果连续起动多次均告失败(较多允许起动次数是预先设定好的),起动程序将终止。在液晶屏上显示起动失败的警告,同时红色LED指示灯闪烁。7、发动机点火后,当发电机输出的频率达到预定值时,发动机起动马达会退出并闭锁。注释:系统也可以利用安装在飞轮壳上的磁检速器检测发动机转速。(通过控制盘的808接口和计算机进行设置。)还可以利用充电发电机的指示灯输出信号来控制起动马达的退出,但它不能用于发动机低速或超速检测。8、在起动马达退出后,安全起动延时继电器开始计时。此时,机油压力、高水温、低速、充电失败和任何被延时的辅助故障信号在发电机组稳定前都不会触发误报警。9、发动机起动后,如果设置有暖机延时继电器,则暖机延时继电器开始计时以便在加载前让发电机组进入稳定状态。10、如果设置了辅助输出继电器来发出负载切换信号,该继电器将动作。注释:只有在机油压力回升后,才能切换负载,以防止发动机过度磨损。11、如果遥控起动信号撤除,停机延时继电器将开始计时。一旦延时期满,负载切换信号将终止并卸载。系统冷机延时继电器将开始计时,令发动机在完全停机前空载运行一段时间以进行足够的冷却。冷机延时结束后,断开燃油电磁阀(停止供油),停机。12、如果在冷机时间内又产生了遥控起动信号,发电机组将重新加载。 柴油发电机组的卸载停机操作图三、手动操作模式 1、将选择开关旋至位置进入手动操作模式。2、按起动按键,起动发电机组。 若系统设置有预热输出延时继电器,预热输出延时继电器开始计时,设定的辅助输出继电器动作。3、预热延时结束后,停机电磁阀(燃油输油电磁阀)动作,对发电机组供油,起动马达投入起动。4、发动机按预先设定的时间进行盘车起动,若在起动期间点火失败,起动马达将退出,并等待一段间隔时间(该时间间隔也是预先设定的)后再次尝试起动。如果连续起动多次均告失败(较多允许起动次数是预先设定好的),起动程序将终止。在液晶屏上显示起动失败的警告,同时红色LED指示灯闪烁。5、发动机点火后,当发电机输出的频率达到预定值时,发动机起动马达会退出并闭锁。注释:系统也可以利用安装在飞轮壳上的磁检速器检测发动机转速。(通过控制盘的808接口和计算机进行设置。)还可以利用充电发电机的指示灯输出信号来控制起动马达的退出,但它不能用于发动机低速或超速检测。6、在起动马达退出后,安全起动延时继电器开始计时。此时,机油压力、高水温、低速、充电失败和任何被延时的辅助故障信号在发电机组稳定前都不会触发误报警。7、发动机起动后,如果设置有暖机延时继电器,则暖机延时继电器开始计时以便在加载前让发电机组进入稳定状态。8、此时发电机组是运行在空载状态下的。加载、卸载情形如下:(1)如果用户的电源切换系统是手动的,操作人员需手动操作输出开关和/或切换开关来加载。(2)如果用户的电源切换系统是自动的,可由电源切换系统提供控制信号给发电机组。如果此时有遥控起动信号出现,虽然发电机组处于手动操作模式,发电机组仍可以提供一个输出控制信号给选定的辅助输出继电器,该输出继电器信号可控制电源切换系统自动加载。(3)在(2)所述条件下,如果遥控起动信号撤除,因为发电机组处于手动模式,所以发电机组仍继续带载运行。(4)在(2)所述条件下,如果将选择开关转到自动 位置,遥控起动信号撤除,停机延时继电器将开始计时。一旦延时期满,负载切换信号将终止,发电机组将卸载。系统冷机延时继电器将开始计时,令发动机在完全停机前空载运行一段时间以进行足够的冷却。冷机延时结束后,断开燃油电磁阀(停止供油),停机。9、将选择开关旋至停机位置。断开燃油电磁阀(停止供油),停机。注释:系统此前是空载状态,可以立即进入停机状态。如果此前是带载运行的则执行冷机(空载运行一段时间)后,再进入停机。 四、启动后微调步骤 1、电压微调旋钮(1)检查电压值。如果未达到规定的电压值,可通过电压微调旋钮进行调节。(2)顺时针旋转提高电压,逆时针旋转降低电压。在旋钮侧面有一个小锁紧开关。拨上去时,可以调节旋钮。拨下来时,锁紧旋钮,防止误操作。2、频率微调旋钮(1)检查频率值。如果未达到规定的频率值,可通过转速/频率微调旋钮进行调节。(2)顺时针旋转提高转速/频率,逆时针旋转降低转速/频率。在旋钮侧面有一个小锁紧开关。拨上去时,可以调节旋钮。拨下来时,锁紧旋钮,防止误操作。注释:空载时的频率应比额定频率高大约3%。发动机转速为1500rpm(1500转/分钟),对应的发电机频率为50Hz。如果发电机组使用机械调速器,则使用下图所示的转速调节旋钮进行调节。3、转速调节旋钮(1)当转速调节旋钮为机械式调速器用于调节转速的装置。(2)顺时针旋转提高转速,逆时针旋转降低转速。按钮压下去的时候,旋钮可以转动来调节转速。(3)旋钮推进去的时候,发动机处于低速运转模式。旋钮拉出来的时候,发动机处于高速运转模式。 总结: 操作柴油发电机组前应确认输出开关处于断开位置。如果开关处于闭合状态操作发电机组可能引起电击。确认发电机组附近无人。如果发电机组附近有人,启动柴油发电机组可能引起电击或其它伤害。另外,必须确认接线盒的输出端子的保护盖板已盖上,否则可能引起意外电击。启动发电机组前,先用钥匙开启控制器点火开关,按启动按钮2~3秒即可启动,如第一次没有启动需隔2分钟再进行启动。注意查看发电机控制仪故障显示灯有无异常,水温、油压指示是否正常;如有异常,作相应整改处理。每隔15分钟检查发电机组运行情况。柴油发电机寒冬低温不好起动原因和较佳处理方法
的起动良好性,不仅取决于本身的技术情形,还受外界气温的影响。例如进入冬季,气温会越来越低,而柴油发电机组运行正常工作都需要在零度以上,但在冬季低温环境下起动就较为困难,会给用户供电安全生产**带来了一定的风险和困难。因此,康明斯发电机组作为重要后备和应急补充,低环境温度会对康明斯发电机组的运行造成严重的危害。本文通过对柴油发电机低温着火困难的缘由解读以及多年的实践,康明斯公司在本文中提供了多项能够保证柴发在低温环境下正常启动和运行的步骤,从而了保证用户供电安全生产有序进行。 柴油发电机在环境温度10℃以下时通常都不同程度的会出现着车困难的问题。在北方每年的12月份起直到次年2月份,几乎占一季度的时间的夜晚和清晨都在0℃以下,柴油发电机(尤其是室外停放的)均会不一样程度受到天气条件危害而表现出不能起动。康明斯发电机组在低温环境下经过一夜时间降温,机组温度早已和气温相近,从而发生诸多因素使机组不能着车。康明斯发电机组冬天低温环境下起动难的问题,必须引起装备**部门的足够重视。(3)由于起动速度减轻,压缩空气渗漏增多,气缸壁散热量增大,致使压缩终了时的空气温度和压力大为降低,进而使柴油发火的增长期延长,严重时甚至无法燃烧。(4)低温下的柴油黏度增大,使喷射转速减轻,加之空气在压缩终了时的旋流转速、温度和压力都比较低,使喷入汽缸的柴油雾化质量变差,难以与空气迅速形成良好的可燃气体并及时发火燃烧,甚至很难着火,致使无法着车。 当柴油发电机很难着火或者无法起动时,首先应注意柴油发电机的起动转速。由于起动速度除与发电机的转动阻力、电瓶的功率以及启动电路的技术状况有关外,还与外界的气温有关,因此当按下启动按钮而无法启动时,可能出现以下情形,起动速度正常,启动转速减少曲轴因启动马达不作业而不转,或起动机空转而曲轴不转动。不能开启,柴油发电机不能起动或不易起动的缘由、诊断与清除上述情形除启动速度正常及受气温影响而使启动速度降低甚至使曲轴不能转动外,都属于蓄电池或起动电路技术状况不好的故障状况,故应查看蓄电池和起动电路技术情形。 至于柴油发电机因气温低使启动转速减轻不能起动,可以根据当时的气温和排烟管排烟状况加以判定。如气温很低,喷入气缸的柴油以蒸汽的形态排出时,一般为柴油发电机受气温影响无法启动,应加温后再起动。如启动速度正常,但发电机无法启动,注意观察柴油是否进入气缸。因为此事故多是由汽缸的密封性差、供油提前角不符合要求和起动油量不足等起因造成的。 为从这些因由中迅速、准确地找出无法启动的具体确切的起因,关键观察柴油是否进缸,即观察排气管是否排气和倾听发电机有无爆发声。启动转速正常,启动时无烟排出,也无爆发声。此事故情形的实质是柴油没有进缸,原由是喷油器不泵油(其直接因由可能油道内有空气、对电磁阀控制油路的电线无电) ,或低压油路不供油(其直接因由可能油箱无油、油路内有空气或堵塞、输油泵不工作等)。这时,应本着先易后难、先外后里的原则,首先观察喷油嘴拉线是否退回、操纵杆和驱动连接盘的固定螺栓是否松脱、油箱是否有油,然后拧松喷油嘴上的放气螺钉,按下柴油泵按钮或压动输油泵的手动泵,检验油路是否堵塞和有空气,按下启动马达按钮,检查输油泵作业是否良好。 柴油发电机的每个工作循环由进气、压缩、做功、排气四个行程。柴油发电机在进气流程吸入的是空气,在压缩行程接近终了时,柴油经喷油咀将油压提高到10MPa以上,通过喷油嘴喷入气缸,在很短时间内与压缩后的发热空气混合,形成可燃的混合气。在燃烧的高压气体推动下,活塞向下运动并带动主轴旋转而做功,废气经过排烟管排入大气。气温较低而无防止对策的情况下,将造成柴油发电机组无法启动和起动后输出功率不足的危害。(1)柴油发电机汽缸压缩终了时空气温度达不到启动所要求的温度,且汽缸内压缩空气压力也明显低于起动所要求的压力,造成无法启动;或启动后带载能力不足。(2)电瓶较佳作业温度为20~40℃,随着环境温度的减少,其电网流输出能力也相应地下降,致使柴油发电机启动系统输出无力;环境温度过低时,机油黏度变大,各摩擦负之间阻力加大,使柴油发电机启动速度下降。上述两个不利条件的叠加,更增加起动难度。(3)当环境温度偏低,机油在气温偏低时粘度较大,其流动性变差,不仅增加康明斯发电机组的零件损伤,而且因为零件运动阻力增大,使机械容量损失增加,柴油发电机组的输出容量就会减轻。经常性冷缸起动加载磨损,将整体减轻机器的负荷能力。(4)环境温度过低,气缸温度就会很低,汽缸内的水蒸气就容易凝结在缸壁上,而柴油发电机燃烧时生成的二氧化硫遇到冷凝在缸壁上的水,就会变成强列的腐蚀剂粘附在缸壁上,因此缸壁表面就会受到强烈的腐蚀,致使其表面金属组织疏松;当气缸套与活塞环之间相互摩擦刮削时,会使腐蚀层表面疏松的金属很快磨损脱落,或在缸套作业表面出现蚀点、凹坑。气缸的磨耗影响柴油发电机组的负荷能力。 目前国内应用的轻柴油按凝固点分为7个标号:10#、5#柴油、0#柴油、-10#柴油、-20#柴油、-35#柴油和-50#柴油。 选型不一样标号的柴油应具体根据使用时的气温决定。比如在0°C凝固的柴油称之为0号柴油,在-10°C凝固的柴油称之为-10号柴油,在-20°C凝固的柴油称之为-20号柴油,在-35°C凝固的柴油称之为-35号柴油,在-50°C凝固的柴油称之为-50号柴油。需要注意的是,这个凝点并不是柴油完全凝固成固体了,而是柴油失去流动性了。 柴油的构造成分复杂,与纯化合物的液体不同,有一个危害到实际操作的指标叫冷滤点。冷滤点是指在规定条件下,当柴油通过过滤器每分钟不足20ml时的较发热度(即流动点操作的较低环境温度)。因此,并不是在凝点之上的柴油都可以操作,在冷滤点的温度下,柴油虽然仍然是液体,但液体中会凝结出一个个的小晶粒,这个晶粒无法通过柴油滤清器。于是,柴油的选用必须高于冷滤点。对照上表,较低气温在4℃以上地区选择0号柴油,较低气温在-5℃以上地区选定-10号柴油,较低气温在-14℃以上地区购买-20号柴油,较低气温在-29℃以上地区选型-35号柴油,较低气温在-44℃以上地区选取-50号柴油。根据当地的较低气温合理选定柴油的标号,既不要过量节约也不要浪费。按当地较低气温购买柴油,常用的场景如下表2所列。 备用康明斯发电机组一般设定为自动启动,停电时即全速启动,无怠速启动流程。起动后转速和电压正常后并机、带载,整个步骤要求在30秒之内完成。秋冬天节温度低,若经常性冷缸启动,必然造成装置严重磨耗,甚至在电池性能不良的状况下也可能不能起动。基于前述的低温下不佳危害,需要采取必要的应对步骤。 大型康明斯发电机组通常均配备了循环水电加热机构,气缸和润滑油常年保持在35-55℃之间,利于需要应急时能立即全速起动且起动后带载能力达到布置要求。 水套加热器是为柴油发电机水箱宝、机油专业预热的机构,使缸体达到适合运行的温度,是低温工作环境下康明斯发电机组*的配套装置。通过电加热将缸体内的部分防冻液进行加热,通高温水和冷水的密度差机理进行热循环,进而将机组缸体、装置固件上的润滑油预热,达到暖机和改进润滑因素的目的。油机工作环境温度低于0℃时应开启水套加热器,将水温加热维持至30℃左右適宜。 对照表格的柴油冷滤点,按当地较低温选定相应标号。如上海地区较低温为-5℃左右,购买-10#柴油。 对于放置在室外的柴油发电机组,应更全面考虑低温对整个输油路径的危害。除了需要根据往年较低温选用柴油标号外,对于室外输油管裸露部位、室外临时油箱等采取保温防护策略,防范产生突发的突破温度下限的状况。 应根据柴油发电机的特征和本地区的气候状况来选型粘度合适的机油,冬天低温地区宜操作低温性能优秀的润滑机油或专业防冻机油。此类机油黏度小,润滑性能好,起动阻力小,可以高效改进低温条件下柴油发电机的启动性能。比如,北方地区操作的是粘度等级为SAE15W-40的多级机油,适宜在严冬使用。 蓄电池较佳工作温度为20~40℃,随着环境温度的降低,其输出能力也相应地下降,导致柴油发电机起动装置动力不足;同时环境温度较低时,机油黏度变大,各摩擦负之间阻力加大,叠加了启动难度。必要时需对电瓶进行保温,保证能正常充电且有足够的输出电流,从而保证有足够的启动系统功率。 根据有关资料,0℃时铅酸电瓶损失约30%的功率,对于室外环境的柴油发电机组更需要重视,对于容量下降明显的在冬季之前及时更替新的起动电池。 对于柴油发电机组本体的加热装置或缸体温度设置监控点,加热系统损坏或加热器保险丝熔断致使无法加热的,能及时得到处置。启动电池和临时油箱宜设置温度监控,也可本地放置温度计便于巡检时进行查验。 寒冬冰雪灾害性低温气候期间,应增加柴油发电机组装置维保检查频次。提前更替柴油滤芯、机油过滤器、空气滤芯等常载部件,替换机油和防冻液冷却水。保持机组各部位清洗、干燥,电路接触良好,确保油机工作在较佳状态。 冬天冰雪低温气候期间,应增加专项柴油发电机组启动测试,及时解除机组安全隐患,确保在双路大电中断的状况下,康明斯发电机组可以及时起动**装备电源提供。 冷天注意关闭油机房门窗,要素允许的情形下,宜安装电动百叶窗,有利于柴发机房的保温隔热。冰雪天气期间应开展专项查看和巡视,防范机房门窗屋面、电缆沟等渗水或结冰。 对于冷起动性能方面的柴油发电机,其不能着车问题比柴油机突出;尤其是冷天低温下,柴油发电机润滑油的粘度大,加之柴油在低温要素下流动性差,如果气缸磨耗,压力不足。总之,柴油发电机在低温下是会发生难以起动的先天特征,但是也不是无法克服和防范的。因此,在低温环境情形下起动是相当困难的,较佳解除办法便是采取冷却机构安装预加热装置。柴油发电机对中检查、测定、组装及危害因素
摘要:不正确的对中将会造成过量的震动,从而缩短柴油发电机和发电机的轴承以及联接件的使用年限,而且经常需要重新对中。柴油发电机组良好的对中作业包括合适的调整垫片,正确的固定螺栓拧紧力矩,高精确的千分表,以及为轴承间隙、热膨胀和柴油发电机的其他特性留有余量。此外,在做任何测定或校正之前,所有的被测表面及配合表面必须完全干净,无润滑脂、油漆、氧化物或锈蚀和脏物,因为所有这些物质均可能造成测定不精确。 当发电机和柴油发电机的中心线是平行的但不一样心(见图1),会发生平行不对中,也称为孔不对中。 孔不对中可使用(见图2)所示的千分表进行检查。当固定千分表的轮子转动时沿飞轮外径上的几个点观察千分表的读数。根据经验作法,发电机的轴要比柴油发电机轴略高,这是因为:注:两部分较好一同旋转。这样可以解除千分表上因部件失圆造成的误差。采用非康明斯连轴器时,由于橡胶联轴器会造成错误的读数,因此在对中心时发电机要从柴油发电机上断开。 当发电机的中心线和柴油发电机的中心线),会出现角不对中,也称为面不对中。(1)角对中可以容易地用塞尺在两个部件联结处测到(见图4)。正确的对中应当是在联结轴周围四点检测到的值该当相同。(2)联轴器安装后,千分表从一个面到另一个面可指出所有角偏差。在任一种种状况下,读数都会受随测量点到旋转中心距离的影响。(3)在确定了柴油发电机和发电机之间的对中后,应检修曲轴的轴向窜动。确认联轴节的螺栓拧紧之后没有造成对止推轴瓦的轴向推力。 下面图5、图6、图7、图8显示出了四种不对中情况,并且可能发生在不止一个平面。基于此,检修对中时必须每90°一个间隔进行测量读数。 加工精确低的法兰会造成明显的不对中性,也不可能实现准确的对中。(1)端面跳动是指轮缘端面偏离轴中心线垂直线)径向跳动是指驱动轮的中心平行偏离轴中心线的距离。 当不对中出现时,必须检验飞轮、离合器或联轴节、被驱动件和轮毂的端面和径向跳动。端面和径向跳动必须要调校。飞轮上导向孔的径向跳动无法超过0.002英寸(0.05毫米),安装到飞轮上联结件的径向跳动不超过0.005英寸(0.13毫米)。法兰的端面跳动不超过0.002英寸(0.05毫米)。调节垫片 所有设备下的垫片的厚度较薄为0.76毫米(0.03英寸),较厚为3.2毫米(0.125英寸),防止在以后的调整中需要减少垫片时没有合适的垫片可用。垫片过厚在操作中可能会被压缩。垫片组应由防锈材料制成,并应小心装卸。柴油发电机 对中后,每个安装面必须承担其各自的负载。下图示出用以验证发电机或柴油发电机正确加垫的过程。当安装的垫片数合适后,在进行调整对准时应均等地加或减垫片。拧紧装备安装螺栓的步骤如下:(3)如果千分表指针读数在0.05毫米以内,重新拧紧螺栓,然后进行程序(4)。如果指针读数超过0.05毫米,在螺栓的支脚下加调节垫。松开所有螺栓,重复流程(1)到(3)。(4)如果指针读数在0.05mm以内,重新拧紧螺栓。如果指针读数超过0.05毫米,在螺栓的支脚下加调整垫。松开所有螺栓,重复流程(1)到(4)。 当螺栓被“拉长”至计算长度时,其拧紧功率是合适的。适当“拉长”能将驱动装备可靠地紧固到机座上。在这种状况下产生的夹紧力虽受到振动而致使活动也仍可保持不变,如果拧紧螺栓的力矩不足,振动时就不能保持夹紧力,而会逐渐松动并产生偏移,见图10。装配螺栓的位置 每一个柴油发电机或发电机的固定螺栓都有必须穿过实心的材料 。如果固定螺栓穿插过空心位置,就会引起变形。如图11所示。对中程序 在所在主要装置都装在机座上之后,就要进行最后的对中工作。柴油发电机应充满油和水,并处于准备工作状态。(1)柴油发电机和所有机械驱动的设备间的不对中性一定要达到较小。许多主轴和轴承的事故就是因为驱动装置的不准确对中造成的。在作业温度和带负荷下,不对中总是要造成震动和/或应力负载。(2)由于在柴油发电机的作业温度和带负荷下作业的柴油发电机没有精确可行的程序测量其对中性,所有康明斯的对中过程必须在柴油发电机停止和柴油发电机及所有发电机在环境温度下进行。(3)在没有读取千分表的读数时,将发电机尽量放到它的较终位置上。在发电机的每个安装表面下面应装有较薄0.76毫米和较厚3.2毫米的垫片。联轴节的装配 联轴节装配如图12所示。在进行对中检验时,其他联轴节的挠性元件必须拆卸。元件的“刚性”会妨碍精确的对中读数。最后的对中工作 用千分表支架装两个千分表以便同时检测孔和面的偏移。记录对中性读数的正确位置。(1)在读取端面读数之前,应确保用途在主轴端部的推力总是具有相同的方向。在顶部将两个千分表对零,并每隔90o(1.5弧度)读取一次读数。转动柴油发电机来转动整个设备。千分表 千分表可以检测到非常小的距离变化。进行轴的对中时,需要测定由于偏移而产生的微小距离的变化。千分表的装配必须牢靠,这样才能准确测出对中值。千分表支架(1)当固定在一个轴上并转动时,千分表支架必须有足够的刚性,才能牢靠地支承千分表。支架可以使千分表处于检测点位置,适当的支架是可以调整的,以便可以在不同中的传动系上进行检测。(2)千分表支架不能因为千分表的重量而弯曲。普通商用千分表支架在千分表转动时,可能会由于支承不牢而出现读数误差。不建议操作千分表磁性底座支架。(3)为了检测支架的刚性,可以将相同一组的支架和千分表旋转一个圈,同时读取支架端的联轴器读数。允许的较大读数小于0.025毫米(.0001英寸)。也可能需要在支架端的联轴器上,用螺栓临时联接一个刚性很好的基准臂,当读取对中读数时,用相同一组的支架和千分表来检测读数。 康明斯建议在进行对中性检测时,应使用如图13所示的支架和千分表。用两个12.7毫米(0.5英寸)直径的螺杆或螺栓来组装连接器。不同尺寸的轴可能需要制造不同的支架。千分表读数的正确性(1)有一个快速程序来检测千分表在检验面对中性时的读数的有效性。如下图,从给定的A、B、C、D四个不同点读数。在读数时,千分表必须返回A点,以确信读数回到0。(2)请记住这个快速检修法需读数B+D应等于C。(当检验对中性时,将驱动和被驱动轴一起旋转,这种方式得到的测定值是高效的)。千分表读数的说明 采用前主轴驱动时,千分表读数可能会显示出被驱动轴低于柴油发电机。这是因为千分表是装在被驱动轴上,而不是装在柴油发电机上,由于联轴结的结构,要反转千分表基准点,见图14。轴承间隙 发电机转子轴和柴油发电机主轴分别绕各自的轴承中心线转动,因此,它们的中心线该当是重合的。对中工作是在静止状态下进行的,这时主轴支承在其轴承的底部。工作时,曲轴并不是处在这个位置上。爆发压力、离心力以及柴油发电机油压力都力图将主轴提起使飞轮绕着它的线。 柴油发电机在静止时,飞轮和联轴器的净重会使主轴弯曲。这个影响必须在对中时得到补偿,因为在对中步骤中,它会导致导向孔或飞轮旋转外径比曲轴轴承的实际中心线低。因此康明斯建议应在装好联轴节时进行对中检验。如图16所示。3、 柴油发电机在相对轴旋转方向的反向扭转趋势和发电机在轴的旋转方向的旋转趋势就是反功率。它将自然地随着负载而增加,以及导致震动。这种震动在怠速时感觉不到,但在带负荷时可感觉到。这一般是因为在反功率功用下,底座强度不足而发生过度的底座挠度,从而改变中心线对中而造成的。这存在边对边的中心线偏差危害。在柴油发电机怠速(无负载)或停机时,偏差就会消失。4、 当柴油发电机和发电机达到作业温度时,热扩张或热膨胀也就随着出现。它同时向垂直和水平两个方向膨胀。垂直方向的膨胀在部件装配脚和它们各自的旋转中心线之间产生。这种膨胀的大小决定于所用的材料、发生的温升以及从旋转中心至安装脚的垂直距离。(1)垂直补偿包括将对中设备调至非零值。(2)曲轴水平方向的热膨胀从柴油发电机的止推轴承向另一端增长。当被设备连接到柴油发电机的这一端时,就要考虑这种热膨胀。如果发电机用螺栓固定到柴油发电机机体时,这种膨胀功能是轻微的,由于缸体和主轴差不多以相等的膨胀率膨胀。(3)水平补偿可采用一个允许驱动与被驱动装备之间作充分相对运动的联轴节。装配装置时,应考虑使水平方向热膨胀进入联轴节的作业区,而不远离联轴节作业区。否则,会引起曲轴止推轴承负载过量,和或使联轴节故障。如果考虑柴油发电机在热态对中检验时,使主轴仍具有端面间隙,则在冷态时就应该留足够的间隙。 随着社会经济的多元化发展,柴发机组与各个行业领域都休戚相关,柴发机组由柴油发电机、发电机、高弹性联轴器、公共底座等部件结构,柴油发电机发电机安装在公共底座上,高弹性联轴器用于柴油发电机主轴与发电机轴的连接,两者轴线与公共底座连接面平行,使得轴系处于水平自由状态,保证其安全稳定运行使用。为确保柴油发电机组的稳定运行,发电机组在装配时,柴油发电机曲轴与电机轴结构柴发机组的轴系,要求两者完全对中,若两者存在偏移或夹角,则发电机组运转时,对轴系将发生极大的损伤,同时对高弹性联轴器也出现损害,大大减轻其使用年限,严重危害发电机组运行的可靠性。官方提醒:未经我方许可,请勿随意转载信息!如果希望领悟更多有关柴发机组技术数据与产品资料,请电话联系出售宣传部门或访问康明斯发电机公司官网:柴油发电机冷却装置改善和效果提高的手段
摘要:对柴油发电机发烫进行冷却能大大降低冷却水和机油的散热量,减小柴油发电机的热损失,改进柴油发电机工作程序状况。冷却机构作为柴油发电机的重要结构部分,其用途效果不仅危害柴油发电机工作的可靠性,更直接影响其经济性能。康明斯公司通偏高温冷却试验和试车试验,结果表明冷却水温度对燃油经济性的影响极大。因此,提高冷却系统的效果会使柴油发电机动力性和经济性得到了充分发挥,可满足柴油发电机在各种工况下使用。 四冲程柴油发电机通过空气与燃料在汽缸内部的混合、燃烧,把燃料的化学能转变为热能,推动曲柄连杆机构运动,向外输出功率,并把废气排入大气中。在此步骤中,有相当一部分热量通过汽缸壁传给冷却水装置,由冷却液循环向周围的环境散热。易发的柴油发电机冷却系统由防锈水泵、柴油发电机冷却腔、调温器、散热水箱、冷却风扇等构成。 当冷却效果良好,柴油发电机能够运转在较佳作业温度时,柴油发电机汽缸内吸进的新鲜空气量充足,喷入汽缸的燃油能与涡动的空气充分混合并完全燃烧,输出较高动力;各部件受热均匀,变形小;各相对运动部件间的间隙符合规划要求、润滑油的润滑性能得到充分的发挥,润滑油不易变质,相对运动部件的磨损减少;排出的废气中对大气环境污染的成分减轻。 衡量现代柴油发电机运转的经济性能,除了指示耗油量、高效耗油率、指示效率、有效效率等经济性能指标,还必须考虑在运转程序中各相对运转部件的过量磨耗引起的零件损坏的损失,恶劣的工作环境引起润滑油提前变质而缩短操作周期的损失,柴油发电机在作业流程中因不完全燃烧生成的HC、NOx、SO2、CO等污染物造成对机件的腐蚀破坏,排放废气造成的环境污染等。无论是经济性能指标,还是柴油发电机在运行流程中引发的各种损失,都直接与柴油发电机的冷却效果有关。 柴油发电机的冷却装置水温偏低,容易增加废气排放、加剧零部件磨耗、减小功率输出,缩短柴油发电机的使用寿命及增加使用费用;水温太高同样会引起柴油发电机新的磨损。对水冷式柴油发电机较佳冷却液工作温度的试验结果表明,柴油发电机全工况较佳防锈水作业温度为86.3 ℃。有探讨表明,当水箱宝温度从80 ℃降到30 ℃时,零件的磨损转速会增加1~2倍。 在正常运转状态下,冷却水温度维持在80~90 ℃,柴油发电机的经济指标比过高。因为农用柴油发电机的工作受环境影响比较大,工作因素比较恶劣,对冷却液的循环路径及冷却强度的调节一般操作机械的调节方式,不能及时地根据柴油发电机的热负荷调节柴油发电机冷却效果,造成柴油发电机的运行功率不能充分发挥、额外损失增大;另外,使用者的使用管理错误,使冷却装置不能真正发挥其功用,进一步恶化柴油发电机工作条件,增加柴油发电机的额外损失,甚至危害到柴油发电机作业的可靠性。冷却系统对柴油发电机的危害主要表现在以下方面:(13)柴油发电机供油时间不正确,增长或提前过多致使在缸内燃烧不充分,在排气管燃烧发生发烫,危害冷却; 如果冷却机构中已经形成水垢,将严重影响康明斯发电机的冷却效果,应及时地进行处理。其清洁方法有两种。 清洁剂的配制与操作程序对于铝合金气缸盖的发电机,无法用酸碱性较大的清洁剂。 在缺少酸碱清洗剂的情形下,亦可使用有压力的清水来冲洗,但冲水压力不能超过0.3MPa(3kgf/cm2)。其步骤如下:① 放出冷却液箱的水箱宝,拆下散热器进、出水管,汽缸盖出水管、节温器,然后装回汽缸盖出水管。② 用压力不超过0.3MPa(3kgf/cm2)的清水从汽缸盖出水管灌进,冲洗水套,将积垢消除,直至水泵流出水不浑浊为止。 风扇皮带不能过紧或过松。过紧会加载皮带磨损,缩短使用寿命,增大了充电机和水泵的拉力,加载了充电机和水泵轴的磨损,同时也增加了内燃机功率的消耗;过松会使皮带打滑,充电机、水泵和风扇的速度减少,危害散热效率,使充电电压降低。因此,皮带过紧或过松时,必须进行调节。 风扇皮带松紧度的检查步骤,若不符合规定值,可旋松充电发电机支架上的固定螺钉,向外移动发电机时,皮带变紧,反之则变松。调好后,将固定螺钉旋紧,再复查一遍,如不符合要求,应重新调节,直至完全合格为止。 在发电机组中修、大修及水泵、风扇等处轴承润滑油脂不足时,应及时向水泵、风扇等处轴承注入润滑油脂(黄油),以减轻轴承的磨损。 应急康明斯发电机组冷却水换热装置,系统包括第一换热器、第二换热器、水泵、控制阀、滤清器、温度计和压力探头,冷却用中间水经过滤清器、水泵和控制阀后通过第二换热器、发电机组水道、第一换热器后回流冷却再循环,已持续对发电机组冷却;所述第一换热器可选的接入发电机组水道;控制阀、所述温度计、压力传感器设置在水管上且与控制箱电讯连接。 在整体构成上,该防冻液装置换热装置采用两套板式换热器、一台离心泵、及相对应仪器仪表和控制箱,在作业过程中,通过离心泵将中间水导入冷却水机构换热模块进行冷却,再将冷却后的水箱宝送回柴油发电机防锈水装置,以保证冷却水的流量、压力和温度,从而整个装置的用电负载,增加冷却液系统可靠性。通过两套板式换热器,能够减轻空间占用,提升转配安装灵活性,便于修复且对发电效率危害小。(1)冷却液尽量使用自来水等杂质少的软水。含盐分多的水,矿山或温泉附近的水对缸体和恒温器等有腐蚀功用,尽量不要操作。② 补充冷却水时,打开散热器端盖,将水缓缓灌入至端盖位置,(10L/MIJ)。这时,要注意预防杂质的混入,加水速度太快会混入空气,这也是致使发电机发烫的起因,发电机运转后水位可能会下降,怠速运转数分钟后可验看一下水位,不足时加以补充。④ 排除水箱宝装置内的空气时,松开发电机的出口水管或恒温器上的冷却液温度传感器的话,效果会更好。 提升柴油发电机的经济性能,不仅要提升柴油发电机的有用容量,减小柴油发电机的有效耗油率,还要减小柴油发电机在各种负载状况下的额外损失,减小对环境的污染。通过采用新型的冷却技术,对冷却系统进行改进,改善冷却机构的冷却性能,有利于提升能源的利用率,减轻污染物的排出,获得良好的经济效益。 通过对柴油发电机冷却水温度等实施实时监测,将水温等信号转变为电信号经柴油发电机ECM排除后,控制电控调温器电磁线圈的供电情况,及时、正确地获得与柴油发电机防冻液温度要求相匹配的阀门开度,控制冷却系统的水流循环手段;适时启动、关闭电动风机及改变风机速度,改进冷却强度,使柴油发电机获得良好的燃烧性能,提高能源的利用率。周天翼等[7]模糊控制机构的实机试验结果表明,设定控制温度为90 ℃,环境温度为15 ℃时,防冻液温可控制为(90±4) ℃,获得良好的控制精度。对柴油发电机冷却装置模糊控制讨论表明:冷却机构智能控制机构实现了散热能力控制的智能化,可以精确自动地调节冷却液的温度,把柴油发电机的工作温度限制在较佳阶段,增长了使用寿命,提升了工作效率,降低了损坏率。该控制机构可根据康明斯发电机组的运行转速、柴油发电机的防锈水温来综合控制冷却系统,从而达到减少电耗、减轻油耗的效果。具有性能稳定、工作可靠、节能潜力大等优势。 改变普通蜡式调温器的温度-升程曲线固定不变的情形,以获得能根据柴油发电机负载、转速等条件灵活控制的温度-升程曲线。通过在普通蜡式调温器的感应体中嵌入电控加温元件,采用柴油发电机ECU对防锈水温等数据测定、解除后,按原先设置在柴油发电机ECU内的温控map图,输出信号控制电控加温器的端电压,使石蜡融化的步骤不再是以柴油发电机的水箱宝温为主导,大大提高调温阀门的动作灵敏度。可以根据柴油发电机负荷、速度、水温高低要求,由柴油发电机ECM自动实现对加温器两端电压的控制,使其在0、4、9、12 v的范围内变化,电控蜡式调温器的反应时间由普通蜡式调温器的4.38 s降低到1.16 s,从而提前达到较佳工况,减轻损失。 采用电控阀门和电喷水泵取代传统的节温器和直驱水泵。改变水泵直接受柴油发电机驱动的限制,冷却装置效能不仅受柴油发电机速度控制,还受到柴油发电机的散热损失等危害。通过柴油发电机电喷单元对柴油发电机温度进行实时监测,对水箱宝流量及在不一样回路中的流量分配进行精确控制,满足不一样工况下柴油发电机的冷却要求,使柴油发电机冷起动时间缩短,不一样工况下柴油发电机工作温度波动小、工作效率高。对柴油发电机电喷冷却系统探求认为:与传统冷却系统冷却方式相比,清除水泵与曲轴间的耦合关系,通过精确控制水泵速度及电控阀门开度,在满足柴油发电机冷却需要的同时防锈水循环流量降到较小,使水泵平均功耗由1.50 kw降低至0.56 kw;柴油发电机水温在效率较高点小幅波动,从而有助于减小燃油消耗率和有害气体的排放。 柴油原理想的作业状态是汽缸盖温度低于汽缸套温度,偏低的缸盖温度有利于汽缸吸气和排气;偏高的气缸套温度有利于润滑油膜的形成,减小损伤。通过对柴油发电机冷却腔构成进行改善,采用分流式冷却设计,可以分别使汽缸盖和汽缸套获得合理的冷却液流量、压力和流场分布。 气缸盖底部喷油器孔与进、排烟阀座孔间是热负载较大的部位,必须优先得到高效的冷却保证,可以在气缸盖的冷却腔中设置一块带孔的隔板,这样在汽缸盖的冷却腔下部采用“横流水”设计以利于对高热负载部位的冷却;在冷却腔的上部采用“纵流水”设计以利于减小流动阻力。对于进入气缸套冷却腔的水流进口设计为切向倾斜,有利于形成环绕圆周方向的流动,使汽缸套周围的水流速度增大,提升换热系数。康明斯公司认为采用分流式冷却步骤,能够获得较高的汽缸体温度,使油耗减轻4%~6%,在部分负荷时hc排放减轻20%~35%。 随着柴油发电机的动力性能不断提升和适应日益严格的节能减排要求。传统的纯水、水与乙二醇混合液等冷却介质的传热性能已不能适应新的技术规格,寻找新型冷却介质备受各国关注。纳米流体是以一定步骤和比例在液体中添加纳米粒子而形成的一种均匀、稳定、高热导率的新型传热工质,如氧化铝+水+乙二醇、铜+水等纳米流体。由于传热效果好,可以把柴油发电机散热机构布置得更加紧凑;能在低压下运行及在较高温度下保持单相流动,减少热损失,提高热效率。康明斯公司通过对纳米流体(氧化铝+水+乙二醇)的探讨发现,对流换热系数能提高20%~25%;搭建的散热机构操作60 nm的纳米流体,在冷却要素较恶劣的情况下,可将水箱的平均温度降低5 ℃,空气出口温度下降7.9 ℃,能避免水箱的“开锅”产生,又能有效地改进柴油发电机舱的换热。康明斯公司研究发现,采用纳米流体的柴油发电机冷却系统可使重型发电机组的冷却机构的尺寸和净重减小10%,这将增加大于5%的燃烧效率;而减轻空气流动阻力、减轻冷却介质的流动损失及驱动风扇的损失,可节省约10%的油耗。 柴油发电机的动力性能能否得到合理的发挥、经济性能的好坏、废气污染物排放量的高低,很大部分还取决于柴油发电机使用者能否准确使用。通过专业技能的培训和相关政策、法规的宣传,让广大用户对四冲程柴油发电机的构成、工作原理、作业性能的影响条件、操作程序、平常维护保养的必要性等有比较清楚的认识。就冷却系统而言,散热器肋片的验查、散热器盖的密封性对冷却机构的危害、水垢的形成与危害、风扇叶片的检查、冷却水温度对柴油发电机工作的影响等都是专业技能培训的内容,使广大使用者认识到冷却系统对维持柴油发电机正常工作、提高柴油发电机经济性、减轻污染排放的必要性,在使用柴油发电机程序中,自觉主动按规范要求使用,提升柴油发电机的经济性能。 冷却机构对柴油发电机的操作性能、经济性能、废气排放有着直接的危害,通过采用电控蜡式调温器代替普通蜡式调温器、采用电喷硅油离合器的轴流式风机代替直接驱动风机、采用冷却腔分流式冷却布置、采用纳米流体等技术,使冷却效果与柴油发电机的作业性能更好地匹配,在作业程序中充分发挥柴油发电机的动力、减小废气排放,能够有效地提高柴油发电机的经济性能。另外,必须注重加强培训宣传,提升广大操作者的专业技能以及对柴油发电机经济性能的认识。柴油发电机差动保护机理和中性点接地要求
发电机保护装备是保证电力系统稳定运行的重要**途径之一,它详细是为了避免发电机因过载、短路、接地故障等因由而受到磨损,并在发生不正常情况时及时切除事故部分,保证柴油发电机及其相关的配电装置不受事故,确保康明斯发电机组正常供电不受影响。康明斯公司在本文介绍了高压柴油发电机的电气保护种类、机理及整定途径,然后结合某参数中心工程推荐了其差动保护和单相接地保护的配置措施,以供其他类似项目参考。 目前,民用及工业项目中使用的柴油发电机以低压柴油发电机为主,用途为应急电源,其价格过低;而大型参数中心的柴油发电机以高压柴油发电机为主,功能为后备电源,且以多台柴油发电机并联运转的程序运转,因此系统过低压发电机组复杂,图1是典型的高压机组供电系统一次性接线图。以上特性决定了后者需要更加完善的电气保护途径。与低压柴油发电机组相比,高压柴油发电机组的电气保护具有以下特征:(1)机组配置的控制界面、感应器功能强大,具备交流电压过高/太低停机、低频停机、超频停机/告警、逆功率停机和逆无功功率停机等功用,发电机组内部产生某些故障时基础上可由自身的控制器监测并进行保护。(2)根据相关国家规范的规定,1KW以上的发电机应装设纵联差动保护。大型数据中心内单台柴油发电机的功率段一般介于1600~2200kW之间,需配置差动保护,并将其作为发电机的主保护。(3)我国的低压大电配电装置以TN装置为主,因此低压康明斯发电机组多采用中性点直接接地的程序,如图2所示;我国的高压大电配电系统多为非直接接地装置,各服务商的柴油发电机对单相接地事故电流有各自的限值要求,因此高压发电机系统不采用中性点直接接地的程序,由此造成发电机单相接地时的事故电流较小,在工程设计中需要采用适当的单相接地保护办法限制这一事故。图1 柴油发电机供电装置一次接线 柴油发电机TN-S供电系统接地线 纵联差动保护反应发电机定子绕组及其引出线的相间短路事故,其中相间短路对发电机的危害较大,差动保护可作为发电机内部相间短路故障的主保护。 考虑到实际运行中存在穿越电流、不平衡电流随外部短路电流增大和电流互感器饱和等条件,实际应用中,多选购具有比率制动特性的纵联差动保护。比率制动式纵联差动保护的动作电流随制动电流变化,保证外部短路事故不误动的同时又对内部短路故障有很高的灵敏度。图3为发电机纵联差动保护的接线图,规定一次电流流入发电机为正方向。Ⅰop.0分别为差动保护的动作电流和较小动作电流;Ⅰres.0、Ⅰres.1为第一拐点和第二拐点制动电流;K1、K2为第一拐点和第二拐点比率制动系数。 保护装置依次按相判别,当满足式(3)中任一个因素时,比率差动保护会动作。Ⅰunb也随之增大,采用二折线比率制动特征后,在大电流区域增大制动系数(制动斜率),能减少保护误动的概率。Ⅰop.0=(0.15~0.30Ⅰn),在微机保护中一般整定为0.20Ⅰn(发电机额定电流)。 从图4中可以看出,当拐点电流确定后,折线的斜率越大,保护动作区越小,制动区越大;反之亦然。在工程计算中,通常为安全可靠,取K1K2=0.5~0.7。 当发电机内部出现严重故障时,保护应立即动作于跳闸,该保护没有电气制动量,这种保护叫做差动速断保护。它的动作因素是任一相差动电流大于差动速断整定值Ⅰop.max 设备安装完毕后,完成保护数据设定,并完成各子装置的初步测试后,对整个发电机-电网-二级配电装置进行了联调联试;因为初期负载很小,只需投运2台发电机、4台变压器,故而还进行了部分装置的联调联试。在部分系统的联调联试程序中,当完成各机组逐台起动-并联后,空载投入变压器时出现1台发电机出口断路器跳闸的状况。 检验差动保护器的记录,发现动作缘由为差动保护动作,研讨联调联试举措后发现跳闸的缘由在于:发电机并车成功后,大电母线kVA变压器几乎同时空载合闸,短时间内出现了很大的励磁涌流。虽然发电机出口的电流互感器(发电机出租公司配套)与中性点互感器(开关柜销售中心配套)变比相同,但磁特征不一致,如铁心材料、响应比、饱和曲线等。在励磁涌流(具体成分为二次谐波)的功能下,差动回路上会出现严重的差动回路不平衡电流,差动电流/制动电流进入动作区,使差动保护器误动作。ⅠNT,假设励磁涌流均分到2台发电机上,每台发电机承受约6~12倍ⅠNT,而发电机的较大外部短路电流也仅为6.6倍ⅠNT,因此采用这种途径将严重危害差动速断保护的保护范围和灵敏性。(3)处置措施K2bⅠ1。其中Ⅰ2为每相差动电流中的二次谐波,Ⅰ1为对应相的差流基波,K2b为二次谐波制动系数整定值。当Ⅰ2与Ⅰ1的比值大于K2b时,可靠制动差动保护;当Ⅰ2与Ⅰ1的比值等于或小于K2b时,差动保护动作。K2b的值通常设置在15%~20%之间。 在综合比较各种策略的优缺点后,甲方重新采购了具有二次谐波制动功能的差动保护设备。此外,若变压器同时合闸,理论上有可能触发差动保护的速断保护,因此必须设置变压器为逐台投入,减轻励磁涌流。完善保护方法及变压器投入举措后,空载投入变压器时发电机出口断路器跳闸的状况不再出现。 单相接地时电力装置中出现频率较高的接地故障,单相接地保护程序与发电机组的接地方式密切相关。而中性点接地方法的选取是一个复杂的综合性问题,它涉及数据中心的安全性、可靠性、持续性、装置过电压水平、设备绝缘水平、单相接地电容电流对设备的故障程度等许多方面。对于数据中心内的10kV电压等级,主要可从供电连续性、与大电接地方法是否匹配、装备投资和对通信的危害等方面解析。 高压康明斯发电机组中性点直接接地,系统产生单相接地事故时会形成单相接地短路,短路电流非常大,对继电保护十分有利,非损坏相对地电压并不升高,不会造成间隙性弧光过电压。 高压柴油发电机组中性点消弧圈接地,中性点与接地点之间串入一个电抗器,来抵消电容电流,限制单相接地故障的短路电流。 中性点接地电阻器(如图5所示)是一种用于发电机与大地之间的一种保护型电器,适用于50/60hz输配电交流大电装置,多台机组的接地电阻连接如图6所示。中性点接地电阻器在柴油发电机组输配电装置正常作业时没有电流流过,而当柴油发电机组产生单相接地故障时,流过中性点接地电阻器的电流很大,一般用于短时作业制。分为搞电阻和低电阻两种, 其中,中性点高电阻接地,中性点与接地点之间串入一个阻抗较大的电阻,把单相接地故障的短路电流限制在5~20 A;中性点低电阻接地,中性点与接地点之间串入一个阻抗较小的电阻,把单相接地损坏的短路电流限制在100~1000A。 高压柴油发电机组中性点不接地,装置发生单相接地事故时单相接地电流为电容电流,当单相接地电流较小(不大于10A)时,系统可带故障运转1~2h,供电连续性较好,短处是发生单相接地损坏时易出现电弧,且接地电流较大时电弧不能自熄,致使产生间隙性弧光过电压,危害装置,破坏绝缘甚至造成多相短路。 如果赋予表3中各项相同的权重,可以看出不接地和高电阻接地方法的特点较多,实用在数据中心中使用。其中高阻接地是目前参数中心柴油发电机使用较多的接地程序。根据服务商要求,单相接地事故电流应限制在200A以内,不接地和高电阻接地程序都满足这一要求。综合各种条件考虑,本工程选用高电阻接地办法。本工程单个发电机供电装置的4台发电机采用共用接地电阻,通过各自的真空接触器控制接地电阻的投入或者切除。阶段,每台发电机单独运行,每台发电机的出口配置了带开口三角形绕组的电压互感器,通过互感器检测机端零序电压,检验是否有单相接地事故,若某机组的互感器反应出损坏信号,则该机组退出并列过程,出口断路器跳闸,发电机停机、灭磁。阶段,通常可采样零序电压或者零序电流来预判是否出现单相接地损坏,若采用零序电流判据,可发现出现单相接地故障的线路,接地信号作用于接地线路上发电机的出口断路器跳闸、发电机停机、灭磁。零序电流保护的原理是当产生单相接地时,流过事故线路的零序电流等于全系统非故障原件对地电容电流的总和。(2)单相接地保护整定 本项目的10kV电缆包含8条至变压器的电缆,2条**压冷冻水机组的电缆,总长约1.8km,截面120mm2,每根电缆的长度在150~220m之间,每个回路的电容电流ⅠCXR0=XC/3,约887Ω。此时ⅠR/ⅠC=3,弧光接地过电压和谐振过电压可低于2.5倍,单相接地事故电流ⅠD=9.66A。 按躲过被保护线路电容电流条件,计算线路零序电流保护定值为Ⅰact=Kact.....................(公式5) 式中:Krel为可靠系数,因为单条线;Ⅰcx为损坏线路的容性电流;ⅠD为单相接地事故电流;Ksen为零序保护的灵敏度系数。 将之前得到的数据代入式(4)可得,Ⅰact=2.8A,Ksen=3.4>2,满足规范中的灵敏度要求。3、接地电阻的选取(1)高压柴油发电机接地电阻的接地电流该当限制在发电机允许的范围内。电流如果过小,那么产生接地损坏时容易发生偏高的过电压,对用电设备不利,如果电流过大,会事故发电机。按照目前公司提供的发电机接地电流限值为100~400A,参数中心发电机系统一般使用100A接地电流,这是单相接地时的较大故障电流。(3) 接地电阻的温升,只有产生接地故障时接地电阻中才会发生接地电流。正常时接地电阻中无电流通过,且接地故障是在一定的时间内会切除,所以接地电阻选购短时间工作型,能够承受连续10s/100A即可。当发生事故时,接地电阻电压约为5.8kV,电流是100A,短时间的容量是580kW,接地电阻必须要求在此容量和温升下能够正常使用。(3)当接地接触器损坏不能合闸或已合闸的接地接触器故障时,此接触器应断开,同时闭合装置中任一台在线发电机组对应的接地接触器,保证装置中有1台发电机组的中性线)当一台发电机组故障而需从并车母排上解列时,发电机组需发出断开对应接地接触器的指令,同时闭合装置中任一台在线发电机组对应的接地接触器,保证装置的接地是通过在线发电机组的接地来实现。 高压发电机组在运转流程出现接地短路时,会对人身和设备造成巨大安全隐患。(1)如果购买不接地程序,那么系统出现接地事故时容易发生偏高的过电压,会导致用电装备异样或者对用电装置不利。(2)如果选型中性点N直接接地,高压发电机因电压为10KV,电压高,而发电机的内阻较小,当发生单相接地损坏时,会出现很大的接地电流。超过发电机极限而导致事故。 故而数据中心较为易见的接地方法是采用电阻接地,每台柴油发电机可以单独接地,也可以共用一个接地电阻,上述步骤,既可以避免接地故障致使的过电压,也可以通过接地电阻限制接地电流,当装置检验流过中线点的损坏电流时,可驱动继保动作。 柴油发电机是参数中心的备载电源,而且价格较为昂贵,通过电气保护办法保证其安全运行是电气设计中的一项重要作业。参数中心的高压柴油发电机与配电变压器的电气距离很近,且变压器装机功率2倍于发电机功率,因此需要采取必要的办法预防配电变压器空载合闸时引起差动保护误动作:一方面可逐台投入配电变压器,尽量降低励磁涌流;另一方面可采用二次谐波制动等判据,提高差动保护躲过励磁涌流的能力。数据中心的柴油发电机的接地方法需要与市电装置的接地步骤匹配,在大部分地区可采用高电阻接地程序。发电机正常运行时,线路出现单相接地后的损坏电流较小,需要采用小变比、高精度的零序电流互感器。在发电机起动但并未并机到发电机母线上时,可配置带开口三角形绕组的电压互感器,通过检验零序电压判定是否有单相接地损坏产生。康明斯发电机组中性点与大地之间的电气连接方法称为市电中性点接地方法,也可称为中性点运转方法。中性点采用何种接地方法,是一个涉及面非常广的技术经济问题。接地方法不一样将直接危害电压的过压值、电气装置绝缘水平、电网运转可靠性、继电保护的选用性和灵敏度,以及对通信线路的干扰。柴油发电机冷却系统的部件构成和大小循环原理
的冷却系统虽然是柴油发电机的辅助装置,但在保证柴油发电机正常工作中起着重要的功能,原理是及时地把发电机零配件所吸收的燃烧气体发生的热量进行散发,而促使发电机能够经常保持在合适的温度要素下工作,使其防范零部件温度过高的同时,也延迟了其操作周期,从而使发电机能够充分的发挥出其强劲稳定的功率。 柴油发电机的冷却系为强制循环水冷系,即利用水泵增强冷却液的压力,强制防锈水在柴油发电机中循环流动。冷却系主要由水泵、散热器、冷却风扇、节温器、柴油发电机机体和气缸盖中的水套以及附属装备等结构。 冷却水严冬又称冷却水,是由防冻添加剂及预防金属发生锈蚀的添加剂和水构成的液体。它需要具有防冻性,防蚀性,热传导性和不变质的性能。经常操作乙二醇为具体成分,加有防腐蚀添加及水的防锈水。 发电机要求操作长效防冻防锈液,它是含有50%的水和50%的乙二醇的溶液(容积比),在标准大气因素下,沸点为108℃,冰点为-37℃。实验证明,这种防冻防锈液对各种金属和橡胶都无腐蚀作用,更换周期为2年。(1)推荐在大多数气候要素下操作50%乙烯乙二醇或丙烯乙二醇基的防锈水与50%纯净水的混合液作发电机的防冻液。对使用湿缸套的发电机建议还需要添加规定浓度的防腐蚀剂DCA4。某些新型冷却水可以不需要DCA4,如弗列加预混型冷却液; 使用这种长效防冻防锈液,可以防止冷却器内腔结垢,降低水套穴蚀和锈蚀;提升炎热季节时的沸点,在严冬时可以防冻;在密封良好的冷却系中,无需经常添加水箱宝,减小维护作业量。 从讲解冷却循环时,可以看出节温器是决定走“冷车循环”,还是“正常循环”的。节温器在80℃后开启,95℃时开度较大。节温器不能关闭,会使循环从开始就进入“正常循环”,这样就造成柴油发电机不能尽快达到或无法达到正常温度。节温器不能开启或开启不灵活,会使水箱宝不能经过散热器循环,造成温度较高,或时高时正常。如果因节温器不能着火而导致发热时,散热器上下两水管的温度和压力会有所不同。 水泵的功能是对水箱宝加压,保证其在冷却系中循环流动。水泵的事故一般为水封的事故造成漏液,轴承毛病使转动异常或出声。在发生柴油发电机过热现状时,较先应当注意的是水泵皮带,察看皮带是否断裂或松动。 水泵进口希望能保持正压,规划时应尽可能提升散热器上水室的位置。发电机出水口与进水口之间的较大外部压力降不得超过35 kPa,否则将危害发电机的水泵进口压力和水箱宝循环转速。尽量不要将风扇装在水泵上,尽量不用水泵驱动空调压缩机,降低水泵承受的附加弯矩。 柴油发电机作业时,冷却液在散热器芯内流动,空气在散热器芯外通过,热的冷却水由于向空气散热而变冷。散热器上还有一个重要的小零件,就是散热器盖,这小零件很容易被忽略。随着温度变化,防冻液会“热胀冷缩”,散热器器因冷却水的膨胀而内压增大,内压到一定时,散热器盖开启,防冻液流到蓄液罐;当温度减少,水箱宝回流入散热器。如果蓄液罐中的冷却水不见减小,散热器液面却有减轻,那么,散热器盖就没有作业。 连接发电机与散热器之间的管路应尽量短而直,减小弯曲;总部署需要拐弯时,管子的曲率半径应尽可能大,以减小管道阻力,且管路的弯角处或截面变化处必须圆滑过渡;为了防止冷系统内产生气泡,从而对冷装置造成破坏和减小冷却效果,必须使发电机和散热器与副水箱相连的的排烟管不形成U字形组成,应采用平顺或逐渐上行程序。如确有必要,则应在发电机水道较高点设置放气阀,加注防冻液时应打开该放气阀,让发电机水套内的气体及时排出。 所有管路要有一定的柔性,以适应发电机和散热器之间的相对运动,避免散热器的管口振裂。水泵进水管应有一定的刚性,以免发电机作业时被吸扁。 散热器的管路可用成形胶管或金属接管加胶管接头;金属接管要进行防锈解除,外径和发电机进出水口部位的管径相同或稍大;成形胶管或胶管接头的内径应和发电机进出水口的外径相同或稍大;胶管壁厚应在5 mm以上,且加有一层纤维,胶管性能应符合HG/T2491标准,具有耐热、耐油性,能在-40℃~120℃温度下长久正常操作,耐压能力应超过300kPa;如管路较长时,应对冷却管路固定,固定间隔约500mm;金属接管插入连接胶管的长度应大于50 mm,并采用平板带式卡箍紧固,卡箍到胶管边缘的距离为5mm~10 mm。 柴油发电机组风扇的用途是扩大流经散热器芯部气体的空气流速,增强散热器的散热用途,康明斯发电机组风扇一般有着排风量大,冷却效果明显,且噪音小的特性,按康明斯发电机组型号和标定功率的不相同,可选型不相同型号型号的风扇,风扇有吸风式(如图3)和吹风式(如图4)这两种构造特征,使用者可按照需要在订购时随意选取1种。 冷却风扇首先要满足冷却系统对风量和压头的需要;同时要消耗功率小、风扇效率高,且有较宽的有效率区;风扇噪音小,重量轻,成本低等。目前普遍采用的有金属风扇和塑料风扇两种,风扇叶片应具有足够的强度,以防折断风叶。确定风扇直径与速度时,要注意风扇叶尖的圆周速度不大于91 m/s,否则对风扇噪音和强度都不利。风扇直径尽可能与散热器芯子迎风尺寸基本相同,以便风扇扫过的面积尽可能大地覆盖散热器芯子的迎风面积,使气流全面地通过散热器。风扇外径扫过的环形面积通常不小于散热器芯子迎风面积的55%。 为考虑冷却系整体阻力,通过散热器芯部的压差不应大于所选风扇特点曲线%;风扇的风压、风速等设计应按发电机在标定工况下和在最大功率工况下冷却水所需较大散热量来计算确定,并经柴油发电机冷却系统的试验评价来较终确定。 风扇护罩是为了增强风扇的冷却效率,使通过散热器芯部的气流均匀分布,并减轻发电机舱内热空气回流而设计的,因此,设计风扇护风罩时应注意技术的合理性。 对于前置发电机,风扇护风罩的布置分整体式和分开式两种;对于后置式发电机,一般都采用整体式。护风罩与风扇叶尖的径向间隙应尽可能小,以保证风扇冷却效率。当采用分开式护风罩时,风扇与护风罩无相对运转,其径向间隙应不超过风扇直径的1.5%,或者5 mm~10 mm;当采用整体式护风罩时,风扇与护风罩有相对运动,其径向间隙也不应超过风扇直径的2.5%,或者15 mm~20mm。操作员应经常严查风扇与护风罩之间的径向间隙,以确保发电机风扇与散热器产生相对位移时,风扇与护风罩之间不出现碰触。 风扇伸入护风罩的轴向位置,与进气效率有很大关系,对于吸风式风扇,风扇叶片的投影宽度应伸入护风罩内2/3为宜,对于吸风式风扇,风扇叶片的投影宽度应伸入护风罩内1/3为宜。 水温感应器其实是一个温度开关,当柴油发电机进水温度超出92℃以上,就会产生报警并强制停机。其作业机理如图5所示。 节温器组成如图6所示。当防冻液温度低于规定值时,节温器感温体内的石蜡呈固态,节温器阀在弹簧的用途下关闭发电机与散热器间的通道,进行小循环。当冷却水温度达到规定值后,石蜡开始熔化逐渐变成液体 ,体积随之增大并压迫橡胶管使其收缩,在橡胶管收缩的同时对推杆功用以向上的推力。由于推杆上端固定,推杆对橡胶管和感温体出现向下的反推力使阀门开启,这时防冻液经由散热器和节温器阀,再经水泵流回发电机,进行大循环。 散热器压力盖通常位于上方(位置如图7所示),其用途是密封水冷装置并调节系统的作业压力,原理如图4所示。当发电机工作时,防锈水的温度逐渐升高。因为防锈水容积膨胀使冷却系统内的压力增高,当压力超过预定值时,压力阀开启,一部分水箱宝经溢流管流入补偿水桶,以预防冷却水胀裂散热器。当发电机停机后,防冻液的温度下降,冷却系统内的压力也随之降低。当压力降到大气压力以下出现真空时,真空阀开启,补偿水桶内的防冻液部分地流回散热器,可以防止散热器被大气压力压坏。 在无膨胀水箱的冷却系中,压力盖装在散热器上水室的加注口上,无膨胀水箱的冷却装置在安装规划时散热器上水室的加注口要高出发电机出水口的尺寸至少50毫米;在有膨胀水箱的冷却系中,压力盖装在膨胀水箱的加注口上。压力盖开启压力通常有0.5bar、0.7bar、0.9bar、1.05bar四种,应根据操作地区海拔高度购买,以补偿由于海拔高度上升导致的大气太力下降。讲解压力盖的开启压力为0.5bar~0.9bar,在高原地区操作时为1.05bar。同时,压力盖应带一个真空阀(即空气阀),线kPa。由于水箱宝经外溢和冷缩后,系统内将出现负压,外界空气可通过真空阀进入散热器或副水箱,使装置内压力与外界大气接**衡,这样对管路、密封垫及散热器等起到保护作用。如果发电机组在高原运转,则由于海拔高,冷却水的沸点减小,更需要采用压力盖。否则,要发生早期沸腾,发电机无法正常作业。 冷却装置除了对发电机有冷却功能外,还有保温的功用,由于过冷或过热,都会影响发电机的正常工作。这个流程详细是通过节温器实现发电机冷却装置大小循环的切换。什么是冷却系统的大小循环?可以简易理解为,小循环的冷却液是不通过散热器的,而大循环的防冻液是通过散热器的。冷却装置能根据当前的冷却液温度,实现系统的大、小循环,实现冷却强度的自动调整。 原理如图9所示。水箱宝温度过低时,柴油发电机需要一个暖机步骤,此时节温器关闭,冷却液循环路线:水泵—缸体、缸盖水套一缸盖水套出水管一节温器一水泵。由于不经过散热器,冷却液温度上升速度快。 机理如图10所示。当冷却水温度偏高时(80℃以上)时,节温器打开,防锈水循环路线:水泵—机体、缸盖水套—缸盖水套出水管—节温器—散热器—水泵。因为经过散热器,防冻液将从机件吸收的热量散发到大气中,有效地控制了柴油发电机温度。 在进行发电机冷却系统的管路连接中,对发电机和冷却装置散热器之间的连接管路,应确保其线路尽量为直形,尽量避免或减少弯曲,以确保装置运行中散热器中空气的排出;此外,对系统连接管路的选择设置,应尽量确保其管路具有较好的柔性,能够对发电机和装置散热器之间的相对运动及其性能要求高效适应;对发电机和散热器之间的距离设置相对较远,从而致使其管路连接相对较长的情况,应在管路布设中尽量沿着水流的方向向上合理翘起,尽量避免水平或者是呈凸形部署的情形发生,从而对系统管路的连接效果产生危害。通常情形下,进行冷却装置的管路连接中,对连接管路多会选择胶管或者是金属管,对金属管管路则需要增加胶管接头,且金属管伸入胶管接头的长度应超过50mm,而购买胶管作为管路的设计状况中,要求其管壁厚度在5mm以上;对管路连接距离较长的情形,还需要在中间进行固定支撑搭设运用,其支撑距离一般控制为500mm。 总之,冷却装置在发电机运转的良好性能支持以及整体性能增强等方面,都具有十分重要的功能和影响,并且良好的冷却系统规划和运行,能够对发呆安机组运行中的有关事故问题进行高效避免。尤其是随着发电机性能不断优化和提升,受涡轮增压器的应用影响,其发电机在发电机组运转中的热负荷增加更为明显。柴油发电机房和配电室的区别
摘要:目前我国主用的电压等级具体分为220V、380V、660V、1KV、6KV、10KV、35KV、110KV、220KV、330KV、500KV,1000KV等输出电压,其中安全电压为36V、24V、12V三种。根据国家相关规定配电室电压一般布置在35KV以下;而柴发机房内的低压发电机组一般为400V,高压发电机组为10.5KV。康明斯公司在此文章中就配电室和油机房各自不一样的功用及其设置要求进行了细说,同时简约明了的说明了发电机房和配电房之间的差别。 配电室是电力机构中一个重要的组成部分,具体用于控制和分配电能的输送。110KV电压等级以下的叫变电所,35KV以下的叫变配电室(室),包括主变室、高压室、中压室、低压室等。在配电室中,高压电能将通过配电变压器变为低电压,然后再通过开关、配电盘等装备分配到各个用户处。同时,配电室还提供电能计量、保护、监视、通讯等功用,供配电装置框图和布置分别为图1、图2所示。② 不应设在厕所、浴室或其他经常积水场所的正下方,且不宜与上述场所相贴邻。装有可燃油电气装置的配电室,不应设在人员密集场所的正上方、正下方、贴邻和疏散出口的两旁;⑧ 民用建筑宜集中设置配电室,当供电负载较大,供电半径较长时,也可分散设置。高层建筑可分设在避难层、装置层及屋顶层等处。 不带可燃油的高、低压配电系统和非油浸的电力变压器,可设置在同一房间内(我一般设的干式变压器,没有油,也是民用建筑中规范的要求),故可不单独设高压室、变压器室、低压室,这些房间可合设;只是专变和公变宜分房间设,故一般设专用配电室和公用配电室。配电室的耐火等级不应低于二级。 配变电室的门应为防火门,且宜设不小于两个出口(长度大于7m的应在的两端各设一个出口,长度大于60m时,应增加一个出口),至少有一个是向室外、公共走廊或楼梯间的出口:① 设在高层建筑(或裙房)内的变配电室,应采用耐火极限不低于2h的隔墙、耐火极限不低于1.50h的楼板和甲级防火门与其他部位隔开;② 设在多层建筑二层或更高层时,通向其他相邻房间的门应为甲级防火门,通向过道的门应为乙级防火门;⑨ 变配电室的门宽及高,应按较大运输件尺寸外加0.3米。一般变配电室的门为2400X2400。 设在地下室的变配电室,宜抬高面100~300mm,防地面水流入配变电房内。高压宜设不能着车的距室外地坪不低于1.80m的自然采光窗,低压可设能开启的不临街的自然采光窗; 发电机房是发电装备的装配和保养中心,具体包括发电机、调速设备、配电装备等构造的一套完整的电力装备。发电机房的大小和控制方法因不同的用途而异。比如,用于商业发电的发电机房较大,功率也更大,需要采用更为先进的自动化控制系统。然而,柴油发电机房的功用都是为发电服务的,确保大电稳定运行。 柴油柴发机房简易设计如图4所示。可布置在高层建筑、裙房的首层或地下一层,并应符合以下规定:(2)不应设在厕所、浴室、厨房或其他经常有水并可能渗水场所的正下方,且不宜与上述场所贴邻;如果贴邻,相邻隔墙应做无渗漏、无结露等防水排除;(3)不应在教室、居室的直接上、下层及贴邻处设置;当油机房的直接上、下层及贴邻处设置病房、客房、办公室、自动化装置机房时,应采取屏蔽、降噪等举措。(4)柴油发电机房地面或门槛宜高出所在楼层楼地面不小于0.1m。如果设在地下层,其地面或门槛宜高出所在楼层楼地面不小于0.15m。(5)柴油柴发机房应设两个门,一个1000mm的疏散门,开向楼梯间;一个运输装备的门(柴发不大于750KVA门开1800mm,柴发大于750KW门开2100mm),开向车库。(6)柴油油机房应采用耐火极限不低于2.00h的隔墙和1.50h的楼板与其他部位隔开。采用独立防火分隔,单独划分防火分区;(7)柴油柴油发电机房内应设置储油间,其总储存量不应超过8.00h的需要量,储油间应采用防火墙与发电机间隔开;当必须在防火墙上开门时,应设置能自行关闭的甲级防火门。(8)应单独设置储油间,储油量不超过8小时需要量,采取防泄、露油办法,油箱应有通风管(室外);如果所在建筑是高层,可适合《高层民用建筑设计防火标准》。 虽然配电室和发电机房都是电力机构中的组成部分,但它们的功用不同,环境布局的差异如图5所示,主要差异如下: 配电室主要用于电能分配和控制,而柴发机房用于发电装置的安装和维护及环保设施。 通常,配电室电压等级在200V~10KV之间,而油机房电压等级可以更高或者更低,甚至频率也不相同。 配电室操作的大部分是手动控制设备,而柴油发电机房则具有更智能化的自动控制装置。 综上所述,配电室和柴油发电机房在电力系统中扮演着不同的角色。配电室用于输送电能,而发电机房用于生产电力。在实践中,二者需要共同协作才能保证电网的安全稳定运行。需要注意的是,在国内外一些高层建筑中,即使市网供电相当可靠,并且满足标准要求,但也都设置了自备应急发电机组,以便当市网万一中断供电,一方面能保证停电期间消防用电的需要,同时也能使供电安全的根本秩序得以维持。柴油发电机动力不佳的详细起因
摘要:柴油发电机长时间地运行后,由于零件的磨耗,操作或调整不当,维修维护不及时等因由,往往会造成动力下降的问题。造成柴油发电机动力不足的缘由是比较复杂的,因此,在总述排除柴油发电机输出无力这个故障时,应抓住燃烧好坏和摩擦损失大小这两个关键性的问题,再结合操作使用者对柴油发电机各零部件的磨耗情形和技术状态的了解和掌握,从而找出造成柴油发电机动力不佳可能性较大的几个原因,然后进行检验和解除。 汽缸压力测量如图2所示,汽缸垫漏气,气门、气门座、气缸套、活塞、活塞环损伤过量,气门间隙过小,减压装置间隙过小等因由,均会造成燃烧室密封不佳,使进入汽缸内的新鲜空气从这些部位泄漏出去,造成气缸内的空气量不足,使燃油在燃烧室中得不到足够的空气而无法完全燃烧,柴油发电机发出的功率自然降低。因为气缸内空气量不足,压缩终点的压力和温度必然减少。燃烧室余隙安装高度调节过度,也会造成同样的后果。上述这些条件都会使燃油的燃烧步骤向后推迟,造成后燃现象的发生,使部分燃油来不及完全燃烧而随废气排出。另外,高温高压燃气也会从上述部位泄漏出去,使燃气做功的能力减轻,造成柴油发电机供电不足。柴油发电机输出无力所表现出来的另一个特点就是排黑烟。因此,汽缸内压缩压力不足是导致柴油发电机功率无劲的详细原因之一,一旦发生应及时清除。 空气滤芯和进气管道中灰尘堵塞或不畅通,都会使进入汽缸内的空气量不足,不仅引起压缩压力不足,而且使燃油因得不到足够的空气而不能完全燃烧,造成柴油发电机输出无力。在其他状况正常的情形下,如果排烟管或消声器大量积碳,排烟不畅通,使缸内废气解除不干净,也会造成进入汽缸内的新鲜空气量降低。此时虽然压缩压力不减轻,但因进入汽缸内的空气量不足,也会使燃油无法完全燃烧,引起柴油发电机动力不佳并冒黑烟。因此,使用者应按期排除空气过滤器和进气管道中的灰尘,按期清除排气管和消声器中的积碳和污垢,保证进排气机构的畅通。 柴油发电机因为超负载过量,运转时间过长,喷油泵供油正时过晚,冷却液流量不足或中断等缘由,造成柴油发电机工作温度偏高,也会使进入气缸内的空气量降低,导致燃油不能完全燃烧,柴油发电机的容量降低,造成功率无劲。 因为喷油咀供油正时调整“非法”,喷油器损伤过度等起因,会造成喷油咀供油正时太晚,因而使整个燃烧流程向后推迟,通常称为后燃严重。此时,部分燃油来不及完全燃烧便被排出气缸,使燃油的能量得不到充分发挥和利用,引起柴油发电机动力无劲,由此发生柴油发电机冒黑烟,零配件发烫,排气温度较高,严重时排气管会冒火花。此时,应检修和调整供油正时。如果柱塞副、出油阀副损伤过量,应及时修复或更替。 喷油泵针阀咬死,喷孔堵塞或碎裂,喷油泵弹簧折断或弹力消失,喷油嘴弹簧调节过紧或过松,柱塞副、出油阀副、针阀副损伤过量,燃油装置的低压油路堵塞等起因,都会引起喷油咀雾化不佳或滴油。此时,柴油发电机的详细优点是排黑烟。一般状况下,排气温度和零配件温度没有明显升高。应及时修理或更替。 由于柴油格或燃油管路堵塞,喷油器柱塞副或出油阀副磨损过大,喷孔堵塞,针阀咬死等原由,使喷油嘴的供油量不足,不能满足柴油发电机负荷增大时的要求,也会致使柴油发电机功率下降。由此造成的供电不足,不会造成柴油发电机零件的损坏,操作者会感到柴油发电机工作无力,转速不能增强,受热零件的温度和排气温度偏低。发现此种情形,应检修造成供油不足的原因,及时排除。 由于装配调节错误,调速板弹簧压得太紧或折断,弹力减弱等原因,使调速器推动喷油咀齿条移动的力量过小,导致喷油泵难以增大供油量,也会造成柴油发电机功率无力。在这种情况下,柴油发电机明显的特点是加载比较困难,速度升高缓慢;减速比较容易,速度降低较快,且柴油发电机的频率不正常定。此时应检查、调节或替换调速器的弹簧。 因为润滑机构的损坏,造成机油量不足或中断、机油过脏、配合间隙过大或过小、柴油发电机太热等原因,使相对运动的零配件润滑不佳,便会使摩擦损失的容量增大,导致柴油发电机输出的功率降低,当柴油发电机发生烧瓦或拉缸事故时,摩擦损失的功率急剧增大,柴油发电机输出的容量急剧减少,严重时会造成柴油发电机自行停机。 因为润滑不好造成柴油发电机功率不足,有几个明显的特点。即柴油发电机零件过热,机油温度升高,严重时能闻到油焦味,柴油发电机发出不正常的沉闷声音。此时应降低或卸去柴油发电机的负载,使其在低速下空车运行,以便查找缘由进行解决。 在柴油发电机装配时,由于汽缸套变形、活塞环切口间隙过小、各配合部位的配合间隙过小、活塞连杆组在气缸中歪斜等原因,都会使柴油发电机摩擦损失的功率增大。因磨耗或连接螺栓松动,导致配合间隙过大,使零件的敲击严重,也会增大摩擦容量,引起柴油发电机供电不足。 由于零配件各配合部位的配合间隙过小、安装“非法”使零件变形或歪斜,所造成的柴油发电机动力不佳的主要特征是机油温度升高,零部件过热。当发生烧瓦或拉缸等严重故障时,上述优点更是明显,柴油发电机还会发出异样沉闷的声音和油焦味,速度逐渐减少,严重时造成柴油发电机自行停机。因为配合间隙过度或零配件松动导致动力不佳的具体优点是柴油发电机发出异样清脆的敲击声。 产生上述状况,应根据装配调整的情况,有关零配件的使用时间和磨损状况,高温和敲击声的部位,从中找出发生故障的缘由,修复或更换有关零配件。 如果曲轴箱内机油过多,使机油油面过高,则曲柄连杆装置的运动阻力增大,消耗的功率增加,也会造成柴油发电机动力无劲。速度检测如图3所示,根据柴油发电机的配制不同,较高空转速度应比额定转速高6%一8%。如果较高空转转速不够,检查加油手柄是否顶到较高空转限位螺钉。低压油路压力不足会直接引起输出无力及喷油咀孔蚀。系统中低压油路的较小供油压力(空载)应为:1500~1899转/分时,油压大于4.2bar;1900~2300转/分时,油压大于5.0bar;大于2300转/分时,油压大于5.3bar。低压油路的压力测定点应在细滤器出油口后(即曲轴箱的进油口处),如果这一位置没有测量空间,可在回油阀前(即油底壳的出油口处)测定。以下各项都是致使低压油路压力不足的原由。从回油阀到油箱的输油管路中是否流动阻力过量。如果阻力过大则回油量不足且燃油温度会升高(燃油温度不应超过80℃)。在确保过滤器没有堵塞的情形下,如果油压达不到,应检修或更换回油阀。如果压力仍不够应检测输油管路中是否流动阻力过大。办法:直接用一个油桶在输油泵前供油,这样可以确定是否是OEM所配的从油箱到输油泵的供油管路及初滤造成的阻力过量。要求:输油泵前的油管内径不能小于12mm,且在较高空转时输油泵的入口处的燃油压力应大于一0.5bar,满足欧Ⅱ排放的柴油发电机应大于一0.35bar。如果仍然压力不足应检查燃油回油量,步骤:将回油管的回油端从油箱上拆下直接插到一个空桶中。测量柴油发电机1min较高空转下的回油量,应在8L以上。只有当速度由较高空转速度减轻到额定速度葚至甚至更低时,柴油发电机的输出才能达到满负荷。满负载时进气歧管中的增压压力应至少达到1.3bar,排气温度(在增压器后100mm的测定点)应有-450~480℃。如果供油量充足而增压压力仍不足,应检测排气背压,不应超过500mmH2O。检修建议:不论空气过滤器采用湿式还是干式,都应经常清洗空气滤芯过滤器或解除纸质过滤器上的灰尘,必要时更换滤芯,保证空气过滤器清洁。修理建议:中冷箱漏气应尽快检修,必要时更替中冷箱。平日应经常查看中冷箱以检测变形和干涉状况,按期维护。柴油发电机常见损坏情形论述及处置办法
损坏的缘由是多方面的。有构造规划和选材不当引起的,有加工制造和安装、调试质量欠佳引起的,也有操作操作不当和维护维护不良导致的。任何损坏都可以先从较大概的损坏因由查起,这样可以避免对柴油发电机不必要的拆卸,节约了时间和柴油发电机修理成本。因此,康明斯公司在本文中具体对操作、保养保养及加工制造等方面造成故障的原由予以简易引荐,同时对多见损坏现状、处置步骤及避免方法做了进一步阐明和说明, 柴油发电机组两大详细组件分别是发电机和发电机,成套整机外观结构如图1所示。其中,发电机是柴油发电机组较重要的部分。它是驱动发电机(交流发电机)发电的动力。所配套的交流发电机是康明斯发电机组的第二个详细部分,现在大多数交流发电机都是带有旋转励磁装置的无刷类别。若是提到故障问题,通常通常发生在发电机上,发电机只要不是非法使用或恶劣环境下作业,几乎不会产生故障问题。当柴油发电机出现故障时,会出现故障图标示警,提醒用户及时清除,损坏警告标志如图2所示。以下为发电机多发的频发故障现象: 柴油发电机排烟的颜色与正常状况下相比存在差异柴油发电机在运转步骤中发生损坏时会产生冒黑烟、 蓝烟、白烟等现状。而在正常运作情形下,柴油发电机排放的烟应为无色或淡灰色。当柴油发电机产生黑烟时, 意味着柴油发电机负载超重,或者供油不及时,发生过晚等状况。当柴油发电机在运转过程中产生冒蓝烟现象时, 则意味着柴油发电机使用时间相对较长,继而开始燃烧机油。因而,当出现这种情况时,要对柴油发电机进行及时修理。当柴油发电机在运行过程中出现白烟时,则意味着在燃烧的油料中含有水分,亦或喷油泵偶件发生严重磨损、供油提前角过量等状况。因而,要用肉眼对柴油发电机尾气排放的颜色进行辨析,并查询到柴油发电机出现故障的因由。 柴油发电机组在运行过程中会出现一些损坏,其中包括柴油发电机启动故障。柴油发电机柴油启动损坏是指柴油发电机在启动时,倘若曲轴产生转不动或者转动速度很慢时,则意味着康明斯发电机组在启动时,转速相对较低。柴油发电机组在起动时,也会出现起动速度虽然正常,但是柴油发电机很难着火,亦或康明斯发电机组在起动时,柴油发电机虽然产生了着火,但是柴油发电机却没有正常运行,运转速度不稳定,甚至发生熄火等现状。 柴油发电机组在运行程序中,也会发生机油压力过低等现象。柴油发电机出现机油压力偏低等情形时,将会危害机油泵正常运行。当然,也会使油路出现大量漏油等情况。柴油发电机出现机油压力太低,也会引起柴油发电机组发生吸油困难,甚至吸不上油等。柴油发电机产生机油压力偏低对集滤器也有一定的影响,会导致集滤器堵塞,从而使康明斯发电机组吸不上油。 由于违章操作造成的柴油发电机损坏,在柴油发电机故障中占有很大比例。这其中有思想上的疏忽,技术上的不通晓,也有错误的习惯作法。易损的违章使用有以下几个方面: 起动后未立即释放按钮、关闭开关。采用电起动系统时,柴油发电机一次持续运行不得超过10s,时间过长将因偏热而烧坏起动机。有时还会产生柴油发电机倒拖发电机现状,导致发电机飞车运行而损坏。 此时由于油温低、粘度高,只是摩擦面润滑不良,从而致使柴油发电机异样损伤、拉伤等损坏。 新的或大修后的柴油发电机,特别是现场维修的柴油发电机,更替缸套、活塞或者活塞环等零件后,未经充分磨合,直接带高负载运转。这样往往造成柴油发电机零件异样磨耗,甚至出现拉缸、活塞卡滞等故障。 油量不足,造成摩擦副表面供油不足,导致柴油发电机异常磨损或烧伤。 水量不足,冷却系统易发生气阻,柴油发电机得不到充分冷却,会因柴油发电机机件太热发生拉缸等事故。 超负荷状态下柴油发电机的功率往往低于标定功率,柴油发电机各部位承受超过正常工作或布置时所允许的热力载荷。柴油发电机长久超负荷作业十分不利,具体因为超负荷作业时,柴油发电机工作粗暴,排烟管冒黑烟,产生大量积炭。同时,柴油发电机温度升高,润滑条件变差,加剧机油老化和零件损伤。 运转中水温过低、过高或油温太低、偏高,都会造成柴油发电机零件损伤加剧。 未按照规定进行维护维保也容易造成故障。多见的损坏起因有以下几个方面: 这样容易造成及油量不足或机油过脏、恶化变质,使润滑变差,造成柴油发电机异常磨耗、烧瓦等故障。 这样容易造成机油过滤器阻力过度,甚至阻塞,机油从旁通阀通过,使未经滤清的脏污机油流入润滑部位,导致柴油发电机不正常磨耗或损伤。如图3所示。 这样容易造成柴油滤芯阻力过度,供油不足,导致柴油发电机功率不足,频率时快时慢等损坏。 这样容易造成空气滤清器阻力过大、空气量不足,引起柴油发电机功率不足、排黑烟或排气温度太高等损坏。 这样容易造成气门间隙过量或过小,引起柴油发电机功率低效、油耗升高、排烟温度偏高和气门磨耗加快等故障。 拆装错误也是引起柴油发电机故障的重要起因之一。其中有以下几个方面: 活塞环开口位置未错开,扭曲环上下面倒装等,将致使柴油发电机窜机油状况和窜气情形。活塞环安装位置示意图如图4所示。 喷油嘴中喷油泵伸出气缸盖底平面高度有严格的尺寸要求,若因垫片漏装或多装而使该尺寸过量或过小,将致使柴油发电机燃烧恶化、积炭严重、功率不足、冒黑烟、或因漏装垫片造成从喷油器处漏气、烧坏气缸盖等状况。 气缸垫购买错误或者漏装,将造成柴油发电机气缸压力下降、漏气和活塞碰气缸盖等损坏。 齿轮啮合记号装错,将引起气门碰活塞,供油提前角太大或太小,致使柴油发电机燃烧恶化、排黑烟、排气温度升高或者活塞烧损等损坏。 紧固连杆螺母、气缸盖螺母时(安装位置示意图如图5所示),力矩不准或紧固顺序不对,将造成柴油发电机气缸盖密封不严,甚至螺栓断裂等故障。 当气门杆和导管之间配合间隙(检验方法如图6所示)、活塞和缸套配合间隙、轴和轴承间隙、齿轮啮合间隙等不符合要求时,将造成柴油发电机异常磨损、拉缸、烧瓦和齿轮损坏等故障。 这方面的起因大部分是材料用错、材料存在内在品质问题和机加工中某些部位不过关造成,加工制造方面的短处在装配中很难发现,使用一段时间后才暴露出来,从而造成零件故障。主要表现在以下几个方面: 表现为有的铸件如缸盖、缸体等存在着松缩、砂眼和细小裂纹等短处,从而使柴油发电机作业一段时间后因这些缺陷出现漏水、漏气、渗油;或表现为铸造精度不高,如水道狭窄,造成柴油发电机工作中水流不畅、热量不易外传,引起气门损伤加剧或气缸盖裂纹。 柴油发电机有些具体零件因为制造步骤中材料用错,操作中因强度不足致使零件故障。 有些柴油发电机零件热排除程序中未按工艺规程操作,是解决后的零件力学性能不符合要求,发生过硬、过软、强度不足、脆性高等问题。在使用程序中致使;零件变形、裂痕、磨损过量等损坏。 有些柴油发电机零件的关键部位,因为加工者未能认识其必要性,是这些部位不符合要求,结果造成使用中的损坏。如活塞销座和活塞销孔的圆角、曲轴的内圆角、活塞环的尖棱等,加工不符合要求往往致使活塞销座裂痕、主轴裂痕、活塞环刮油效果差等,再如主轴的主要曲轴颈同轴度、机体主轴承孔的同轴度加工误差,引起主轴的偏磨,甚至烧瓦。 有些柴油发电机零件因排查应力不够,造成使用中变形,丧失原来的加工精度,破坏了正常的配合关系,使柴油发电机产生漏气、漏油、渗水情形。 和柴油机的单缸断油手段相似、即在柴油发电机怠速运行的情况下,逐一将其高压油管接头螺母松开(使该缸不喷油),并察听柴油发电机运转的声音有无变化:若没有变化说明这缸原来就不作业;声音变化越明显,说明这缸原来作业得越好。当遇到柴油发电机有异响时,也可以用逐缸断油法察听是哪一缸有“异”响:断油后、异响会明显减弱。 详细用于柴油发电机启动后的较初阶段,用手触摸各缸排气歧管的温度:正常状况下各缸的温度基础相同;若发现某缸排烟歧管处的温度明显低于其它缸,说明该缸喷油量小或不喷油、或喷油后没有发火燃烧。在柴油发电机作业一段时间以后,因为排烟歧管间传热的关系、这种温差现状就不明显了。这可以将排烟歧管拆下、观察缸盖上各缸的排气孔:排气孔干燥的,一般该缸作业较好;若排气孔处有柴油濡湿的情形,说明该缸工作不佳或不作业。 在柴油发电机启动时,若排气管不冒烟、说明柴油泵不供油;排烟管若冒白烟,说明柴油发电机过冷,柴油中含有水份或混合气没有发火燃烧;冒蓝烟说明烧机油(通常在晴天看得比较清楚);若排黑烟,说明点火太早、喷油器滴油或空气过滤器堵塞造成进气量不足。正常的烟色为淡灰色,在大负载时为深灰色;柴油发电机刚起动时,由于温度低,排烟较浓,柴油发电机走热后烟色会逐渐减少至正常。 卡在高压油管上的专用传感器,用测振动的举措可精确检修喷机油压力的变化。在柴油发电机运转流程中,也可以用手捏在高压油管上,凭手感觉高压油管脉动的大小,来判断高压油泵的供油情形。如果某缸供油量少或不供油,则其高压油管的脉动小或没有脉动。 在柴油发电机运行的流程中,用螺丝刀或听诊器触及喷油嘴体、可以听到柴油发电机正常作业的爆发声为有节奏的“当当”声,且有类似金属敲击的回音。若某处的响声没有节奏且无敲击声,只有不干脆的响声、说明该缸供油量过小或没有及时发火和完全燃烧,甚至没有发火燃烧。若某缸喷油咀雾化不佳、滴油,则会发现类似“敲缸”。的剧烈敲击声,配合断油法即可确定是哪一缸有故障。在预判柴油发电机主轴承和连杆轴承异响时,应避开着火敲击声的干扰。因为柴油发电机的着火敲击声较大,引起主轴承或连杆轴承的响声不易被听清。这时应采取猛踩加载踏板,然后突然收回的策略,趁柴油发电机降速之际查听轴承的损坏响声就比较明显。 将高压油泵上的高压油管拆下,用起动马达带动柴油发电机运转,每个喷油接头都应喷出高度不低于100mm的油柱,否则说明该缸有故障。 燃油系统是柴油发电机的重要构成部分,在柴油发电机作业流程中,燃油系统工作品质的好坏,直接危害柴油发电机的作业性能。而燃油装置本身损坏的复杂性、多样性,其故障清除具有一定的难度,对于燃油装置,怎生高效诊断燃油供给系故障并提前做好避免途径,在柴油发电机检修中起着至关重要的功能。为了使康明斯发电机组在运输程序中稳定运行,需要对柴油发电机的燃油质量进行严格检修。可以派遣相关人员专门负责燃油检修工作,其工作内容包括对燃油的品质进行严格把关。如果在检修流程中发现油色浑浊亦或燃油含水过多时,要及时对燃油进行过滤,继而增强燃油的清洁度、纯度和品质。当然,也要检测高压油管是否严格密封,喷油器是否完好无损,倘若发生故障等现象,要及时替换。 在研究柴油发电机规划机理的前提下,浅述其易见故障情形及危害主因,要从实用角度出发,关于其多见故障判断及检修技术进行深入的研讨,找到柴油发电机易发损坏部位和原由,继而提出高效的避免方案,从而防止重大人身装备故障的产生,继而降低不必要的损失。关于启动系统损坏导致柴油发电机组不能着火这一问题,要对马达进行更换。当然,也要对蓄电池、起动开关等进行维修替换,从而确保柴油发电机组正常运转。与此同时,也要确保柴油发电机组能够供给充足的气体。因而,对气孔阀也要进行修理。 要想使柴油发电机稳定运行,就需要防范柴油发电机在运转步骤中产生损坏,这就要求工作人员在对柴油发电机进行操作时,应按规范流程进行使用。当然,也要对柴油发电机零配件进行严格检修,对于破损的零部件,要及时更替,可以对燃油泵、喷油嘴等进行检验修理,从而使柴油发电机在运行流程中避免很难起动现状的发生。 通常情况下,机油泵因为长时间运行,难免会产生磨耗破坏等情形。机油泵的驱动齿轮会产生与驱动轴无法完全吻合等情况,因而,工作人员要对磨耗破坏的机油泵进行及时更替,以免危害康明斯发电机组的正常运行,从而减小机油泵给销售中心发展带来的巨大损失。 为熟悉决油路渗油严重这一问题,要对油路进行按期检测。对油路连接的密封处进行自己检测,是否密封严密。当然,凸轮轴的轮轴套也不可以过松,限压弹簧也不可以太软。这些细节作业要落到实处,唯有如此,才能减免油路泄露事故的发生。 康明斯发电机组在备载供电装置中占有重要地位,是企业保证作业和生产的重要工具。但是,康明斯发电机组在运转程序中难免发生损坏,因而,要对柴油发电机组出现的损坏进行诊断,并提出切实可行的修理办法,继而确保柴油发电机正常运转。从以上本文的解读和详述当中可知,深入探究柴油发电机常见故障判定与排除方案非常重要,有利于提升柴油发电机损坏检修和检验的效率与能力。望此次探求的内容和结果,能够获得相关修理人员的重视与关注,并从中得到一定的帮助,提升柴油发电机损坏修理的质量。柴油发电机冷却风扇的装配位置及检验
摘要:散热器风扇是柴油发电机组冷却机构的重要结构部分,若散热器风扇出现故障,则会引起发电机冷却不足或冷却过大,造成发电机作业环境恶化,进而危害发电机的性能和使用寿命。散热器风扇的性能直接影响发电机的散热效果,从而影响康明斯发电机组的性能。 风扇通常装在散热器芯部后面,它的主要功用是增加流经散热器芯部空气的流速,增强散热器的散热能力,水冷装置的风扇要求足够的风量,适度的风压,功率消耗少,效率高,噪音低以及工艺简单,在水冷装置中主用的是轴流式风扇,这种形式的风扇组成简易,布置方便,低压头时风量大,效率高。查看散热器风扇轴、带轮外部有无损坏,并检测轴上装轴承位置的外径为49.962~49.982mm。轴承端隙应为0.08~0.25mm。转动张紧轮,查验轴承是否有卡阻或故障。 如果轴承磨耗,应拆散张紧轮总成,更替轴承,并检测轴径有无损伤,轴径为21.961~21.974mm.张紧轮孔内径为45.936~45.962mm。如端隙超过所规定的范围,应更换轴承。在拆卸轴承时应做好标记。(1)查验散热器风扇张紧轮、张紧轮导向臂减振器的安装位置。有的柴油发电机无减震器而又一松紧螺套来代替减振器。(2)查看导向臂轴有无磨耗,如果轴表面有沟槽或松投,应当和支架一起替换。导向臂轴径应为38.087~38.113mm。 注意检验风扇有没有裂痕,查验螺钉或叶片是否松动等状况,如有裂痕,请及时联系修复人员进行更换或焊修,焊修时应注意,要切实焊修牢固;如螺钉或叶片有松动现象,若有可用重铆叶片的方式修复,确保风扇装配的牢固可靠。其方式是:将叶轮(叶片和架)固定在专用上,放在刀形铁上进行查看。查看时用手轻轻拨动叶片,使带轴的叶轮在刀形铁上转动,特自动停止后,将位于较下面的叶轮做上记号。这样重复几次,如果每次居于下部位置的是同一叶片,则说明该叶片与其他叶片相比要重一些,[康明斯电力]可用砂轮将其端面或后侧金属磨去少许,使之达到静平衡,散热器风扇叶片的质量差般不超过5~10g,带轴的叶轮在刀形铁上转动时,每次停止位于下部位置的叶片可为任意一片,则说明散热器风扇叶片达到了静平衡要求。柴油发电机异响现状类型和诊断方法
摘要:柴油发电机实际作业流程中,经常会出现各式各样的问题和损坏,这些故障和问题给操作者造成许多麻烦。柴油发电机出现故障或问题后,怎么样准确及时地判定产生事故和问题的位置,是排除事故的关键。康明斯公司根据多年来对柴油发电机损坏处置经验,总结出柴油发电机运行中多见损坏维修步骤。因此,本文简要介绍了发电机异响产生的起因及异响的影响条件和诊断要素,研讨了柴油发电机异响故障判断的方法和维修示例,以供大家参考。 技术情况良好的柴油发电机,在以不同的转速运行时,虽然发出的频率、波长、声级和衰减系数不一样,但都有一定的规律和范围,如果柴油发电机在运行流程中,伴随有其他声响,如发出间歇或连续的金属敲击声、连续的金属摩擦声等,即表明柴油发电机运转异常,所伴随的声响为柴油发电机异响。柴油发电机异响的种类很多,根据柴油发电机异响的产生原由详细可分为四类:机械异响、燃烧异响、空气动力异响和电磁异响。 具体由运动副配合间隙过度或配合面有磨损所致,如图1所示。因损伤或调整错误造成运动副配合间隙过量时,运行中会致使冲击和震动,产生声波,如主轴曲轴承响、连杆轴承响、凸轮轴轴承响、活塞捣缸响、活塞销响、气门响、正时齿轮响等,多是因配合间隙过量造成。但有些异响可能是因配合面损伤较大造成(如正时齿轮齿面)或其他因由造成的。还有些异响可能因为在装配的步骤当中存在一些问题,如螺栓拧的不到位未达到规定力矩、或者在安装中没有按修复手册中的顺序来进行装配使得装配达不到要求、还有就是有些装配要求在一定的因素下进行而修理厂没有相关装置从而使装配达不到要求产生异响。 详细是因为柴油发电机燃料异常燃烧造成的。如点火过早,会造成爆震,活塞上行受阻,效率减轻,热负荷、机械负荷、噪声和震动加剧,这是该当防范的;点火过迟,气体做功困难,油耗大,效率低,排烟声大。发生燃烧异响的详细起因有使用柴油的品质,柴油发电机的压缩比,柴油发电机工况以及可燃气混合比等。 具体是柴油发电机进排烟口和运行中的风扇处因为于零部件老化磨耗等导致泄露而发生异响,进气和排气所在位置如图2所示。 较具体的原由是节气门或怠速阀等部位发生积碳,从而导致的频率时快时慢,发生异响。还有就是排气管衬垫事故,排烟管因涉水,年久失修氧化而产生排烟泄露引起排气异响。 进气歧管在柴油发电机上方,持久处于过热的状态。致使真空阀的膜片老化失效。进气歧管内的活板处于活动状态,因为吸力,致使活板打到进气歧管上,嗒嗒作响。怠速运转时在柴油发电机上部会听到一种“咝、咝”的漏气声,随速度增强逐渐消失,冷车、热车响声没有变化;同时柴油发电机怠速运行时伴有个别缸作业部稳定现状,部分附件因缺真空而不工作。该类事故的发生一般是因为真空胶管松动,脱落后,因柴油发电机运转发生真空,在真空软管接头处较大的吸力而发生气流的响声。 因为设计不合理或长年失修引起故障时散热风扇转动产生的气流不稳定而致使干涉产生异响。 详细是发电机和某些电磁元件内,因为磁场的变化,引起某些部件或某一部分产生振动而形成的异响。 柴油发电机异响易损故障详细集中在曲柄连杆装置和配气机构,其基本处理程序如图3所示。 听诊程序是指采用或不采用某种简易器具,进行异响诊断的步骤和形式。通常包括外部听诊和内部听诊两种。 操作听诊器具(金属棒或旋具等)或不使用听诊器具在柴油发电机外部进行听诊的程序,称为外听。有实听和虚听之分,实听是用听诊器具抵触在柴油发电机缸体上进行诊断的一种听诊方法,虚听是不用听诊器具直接凭听觉诊断异响的一种听诊方法(如图4所示)。 内部听诊是相对于外部听诊而言的,它是利用导音器材从柴油发电机内部抬音进行听诊的一种步骤。如使用听音管从加油口或机油尺插口中插入曲轴箱中(无法插入机油池内)进行听诊。这种听诊程序可以消除外部噪音的干扰,尤其是对于较为弱小和在外部难以辨别的异响的诊断,内部听诊比外部听诊的效果好。 由于柴油发电机异响机件的组成形式、承受的负荷、所处的位置、润滑因素以及松旷的程度等的不一样,因而发生异响时的转速也各有差别。柴油发电机的各种异响本身都有其特定的振动频率,当运动转速频率是异响频率的整数倍时,会发生共振情形,异响加剧。即每种异响在其响声较明显时都对应一个运动速度段(速度范围),通常将音量、节奏、音调等暴露得较为明显的转速或速度区域称为较佳诊断速度。 柴油发电机运转过程中的某些异响与柴油发电机的负荷有关。通常情况下,负荷越大,异响越大,其表现是异响与缸位有明显的关系。在诊断过程中,可以通过改变柴油发电机的负荷,使异响的声音大小产生改变,从而有助于异响的定性和定位诊断。改变柴油发电机负载的步骤有增加负载和处理负载两种做法。应用较多的是处置负荷。清除负载的程序一般是逐缸断火或断油。 柴油发电机有异响时,柴油发电机某部位就会发生振动,其震动频率与异响声频率往往是一致的。由于不同的发响机件所处的部位不同,于是在柴油发电机上的振动强烈程度亦不一样,一般将在柴油发电机机体上振动量较大的区域称为较大振动部位,各种异响在柴油发电缸体上都对应着各自的较大振动部位。根据此道理,就可以大致判明异响机件的部位,这是诊断柴油发电机异响的重要辅助策略。因此,通过实听较大震动部位,根据较大振动部位在机体上的区域和振动频率与异响的关系,就可以大致判明发响机件的部位。 柴油发电机作业温度的变化,能使柴油发电机机件的润滑要素和配合间隙发生变化。温度越高,润滑油的黏度越低,发生异响机件间的润滑油膜就越薄,机件间的冲击力就会增大,异响声也就更加明显;有些异响在柴油发电机温度升高后,由于配合机件的材料不同,受热后膨胀量不一样,异响因柴油发电机温度升高而减小,甚至消失;这表明柴油发电机的某些异响与温度有着密切的关系。因此,在诊听柴油发电机异响流程中,密切注意异响与温度变化的关系,进行冷、热车对比,往往是预判某些异响的关键依据之一。 柴油发电机的某些异响常伴随有机油压力减少、加机油口脉动冒烟、排烟管冒烟的烟色不对、容量减轻、燃料消耗过甚等其他故障出现。例如主轴轴承松旷过甚发响时,往往伴随机油压力减轻、柴油发电机抖动等异常状况。因此,这些伴随现象成为辅助诊断异响损坏的依据。 康明斯柴油发电机启动后,听到第一、二两气缸机体上部有一种非常尖锐、音调较古且为明显的金属敲击声;柴油发电机速度从高速突然降到低速时,能听到一种“噹、噹”的金属敲击声。 柴油发电机起动后,听到机体上部有一种非常尖锐、音调过高而明显的金属敲击声,柴油发电机速度从高速突降到低速时,能听到一种“噹、噹”的金属敲击声,这种损坏一般是由于柴油发电机供油提前角过小或连杆铜套磨耗过甚所造成。(1)取下一、二两气缸的缸体侧盖板,转动柴油发电机飞轮,使一、二两缸的活塞分别转动到处于压缩冲程的下止点;(2)用手握住连杆的中间位置来回晃动,观察是不是在活塞销部位有晃动的感觉,结果发现第二气缸活塞销部位有晃动的感觉,且有一种金属碰撞声;(4)更换连杆铜套后,按安装要求和次序分别把活塞连杆组件、气缸盖等安装完毕,然后调节气门间隙;(5)柴油发电机起动前的各项准备作业完毕后,启动柴油发电机进行查看,验看中发现金属敲击声消失,柴油发电机运转平稳,损坏即被解决。 发电机异响特征浅聊步骤和诊断程序是诊断发电机易见异响的基本理论与程序,只要掌握了这些基本常识,并在实践中不断总结、积累经验,就一定能够对发电机易发异响做出与时、准确的诊断,从而保证发电机与康明斯发电机组良好的技术情形。发电机异响表明发电机存在不一样性质和不一样程度的损坏,异响只是现象,而故障才是本质,对发电机异响的诊断就是要透过状况找本质,它是康明斯发电机组故障诊断的一个非常重要的方面。